2.4. Возможные сроки осуществления доклеточной эволюции
2.4. Возможные сроки осуществления доклеточной эволюции
Необходимо принять во внимание, что химическая эволюция, начавшись, как полагает большинство исследователей, не ранее 3.9 млрд лет тому назад, должна была привести к появлению клеточных форм жизни менее чем через 50 млн лет. Это ограничение накладывается обнаруженными недавно признаками существования жизни 3.8–3.85 млрд лет тому назад. Основанием для такого утверждения явилась повышенная доля легких изотопов углерода, железа и других элементов в древнейших обнаруженных осадочных породах, формирование которых относят именно к этому интервалу времени (Schidlowski, 1992, 1995; Mojzsis et al., 1996). Считается, что клеточная мембрана несколько более проницаема для легких изотопов. Это приводит к их более высокому содержанию в молекулах биологического происхождения по сравнению с молекулами, образованными небиологическим путем. Преобладание легких изотопов над тяжелыми в биологических молекулах незначительно. Так, для углерода С12/с13)биол. /(С12/С13)небиол. =1.01. Однако это превышение вполне регистрируемо. Принимая приведенные результаты, необходимо учитывать их предварительный характер. В частности, предстоит еще убедить оппонентов (van Zuilen et al., 2002; Fedo et al., 2006) в том, что исследованные породы действительно являются осадочными.
В настоящее время у исследователей нет единого мнения, достаточно ли было 10–50 млн лет для всей доклеточной эволюции. Многим этот срок кажется недостаточным. С другой стороны, Сидней Миллер и его коллеги полагают, что от начала химической эволюции до появления клеточных форм жизни могло пройти всего 5-10 млн лет (Lazcano and Miller, 1996). Аргументируя в пользу этого постулата, авторы обращают внимание на то, что синтезированные в ходе химической эволюции органические соединения были подвержены деструкции под действием тех же энергетических факторов, которые участвовали в их образовании. Поэтому медленно прогрессировавшие конгломераты (доклеточные образования) были обречены на инволюцию из-за деструкции составлявших их органических молекул. По этой логике вся доклеточная эволюция должна была пройти достаточно быстро, чтобы участвующие в ней конгломераты органических веществ успели превратиться в клетки – заключенные в малопроницаемую оболочку (мембрану) автономные образования, которые оперативно обновляют свой состав, захватывая вещества извне и осуществляя собственные синтезы. Накопив определенный избыток образующих их компонентов, клетки делятся на равноценные дочерние клетки. Именно эти присущие клеткам качества – обновление состава путем многократно ускоренных катализом синтезов и размножение делением – обезопасили их от гибели из-за спонтанной и индуцированной деструкции органических молекул. Весьма конкретный срок, отпущенный на всю доклеточную эволюцию, авторы выводят из предельного срока “жизни” органических молекул в Мировом океане. Согласно их концепции, вследствие циркуляции вод Мирового океана все присутствующие в нем молекулы в течение 10 млн лет обязательно попадают в зону извержения донных вулканов, где органика подвергается термическому разложению. Деструкция органических соединений при нагреве, действии излучений и по иным причинам безусловно имела место и оказывала существенное влияние на темп доклеточной эволюции, однако предложенное Миллером и коллегами обоснование отпущенного ими срока на доклеточную эволюцию не кажется убедительным. Кроме того, океан не был единственным местом, где различные мультимолекулярные комплексы “пытались” трансформироваться в клетки. Предпочтительным полигоном для таких попыток могла оказаться увлажненная твердая поверхность и запыленная влажная атмосфера. К этому вопросу мы еще вернемся. Здесь лишь отметим, что большую роль в темпе доклеточной эволюции имела эффективность нуклеации, т. е. частота зарождения мультимолекулярных комплексов, претендующих на превращение в клетки. В зависимости от многих обстоятельств (эффективности предшествовавших этапов химической эволюции, пространства, доступного для формирования и развития этих комплексов и др.) число этих центров могло бы отличаться на много порядков. Соответственно и сроки, основанные не на конкретном знании, а на предположениях, могут в интерпретации разных авторов кардинально отличаться.
Выше мы придерживались наиболее распространенной версии о начале на Земле эволюции (в первую очередь, химической) около 3.9 млрд лет тому назад, когда на поверхности планеты установились, наконец, благоприятные для того условия. Однако, если не ограничиваться представлением, что жизнь могла зародиться и поддерживаться только на поверхности планеты, то открываются дополнительные ниши, где процессы доклеточной эволюции могли начаться значительно раньше. Это глубины океана и достаточно удаленные от поверхности слои атмосферы. Есть основания полагать, что глубинные области океана не подвергались испарению даже при самых сильных катаклизмах. Там, в придонных участках вблизи выходов горячих газовых струй и извержений подводных вулканов возникли благоприятные условия для процессов, ведущих к становлению жизни (Maher and Stevenson, 1988; Ferris, 1992). Существенным фактором в этих придонных процессах могло стать давление, создаваемое столбом воды высотою несколько километров, смещающее равновесие в химических реакциях в сторону синтеза, в том числе полимеризации.
Несколько позже было обращено внимание на атмосферу Земли как еще один резервуар, в котором могли осуществляться не только ранние органические синтезы, но и сложные процессы предбиотической эволюции (Woese, 1979; Oberbeck et al. 1991). В атмосфере в большей степени, чем в других резервуарах, были доступны все упоминавшиеся выше источники энергии: электрические разряды, тепло, исходящее от Солнца, а также от раскаленной поверхности Земли, ионизирующее и ультрафиолетовое излучения, поступающие из космоса, главным образом от Солнца. Вулканические извержения и метеоритные взрывы пополняли атмосферу газами, влагой, распыленными минералами. Кроме того, как уже обсуждалось выше, значительное количество минеральной пыли и реакционно-способной органики поступало в атмосферу из космоса. На достаточном удалении от поверхности устанавливался благоприятный режим для органических синтезов и других эволюционно значимых взаимодействий. Восходящие потоки тепла и газов поддерживали взвешенные частицы и капли влаги на удалении от поверхности. Реакционно-способные соединения, синтезированные из газов, и органические молекулы, проникающие в атмосферу из космоса, скапливались в капельках влаги, размеры которых не были постоянными. Перемещаясь в нисходящих и восходящих потоках, они могли уменьшиться вплоть до полного высыхания, когда оказывались в нижних (горячих) или в верхних сильно разреженных слоях атмосферы, а затем, вернувшись в насыщенные влагой слои, вновь увеличивались в размерах, обогащались реагентами, в том числе аминокислотами, и цикл повторялся. Эти метаморфозы могли иметь принципиальное значение. При вызванном испарением уменьшении размеров капель содержавшиеся в них вещества концентрировались в десятки и сотни раз. Благодаря этому существенно ускорялись синтетические процессы. Присутствовавшие в каплях пылинки металлов, глин и других минералов не только предоставляли твердую поверхность для ориентированной сорбции реагентов, но благодаря выходу на поверхность определенных, в том числе заряженных, групп оказывались способными катализировать происходящие на их поверхности реакции (Бернал, 1969; Wachtershauser, 1988, 1994; de Duve and Miller, 1991). Важно отметить, что в условиях поверхностной сорбции могли быть осуществлены важнейшие процессы, практически невозможные в чисто водной среде. В первую очередь, это относится к образованию пептидных связей, соединяющих аминокислоты в цепочку, образующую белок (пептид), и фосфоэфирных связей, которые, возможно, формировали ранние автореплицирующиеся молекулы. Большое значение для прогресса доклеточной эволюции могли иметь акты дробления-слияния капель, внешне напоминающие акты деления-слияния клеток, когда осуществляется перераспределение материала, возрастает многообразие синтетических процессов и, соответственно, их продуктов. Если реакции синтеза преобладали над деструкцией, атмосфера обогащалась все более сложной, в том числе полимерной, органикой, сгруппированной в разнообразные комплексы на поверхности пылевых частиц. Очевидно, что достаточно прочная сорбция на поверхностях, выполнявших функции концентратора и катализатора, могла происходить только при умеренной температуре. На этом основании Бада и Лазкано выступили против широко распространившихся представлений о зарождении жизни вблизи придонных горячих источников и вулканов (Bada and Lazcano, 2002). Однако необходимые для зарождения жизни процессы могли осуществляться на некотором удалении от источников тепла (см. Borgeson et al., 2002).
Около 3.9 млрд лет тому назад, когда затвердела кора и температура поверхности стала ниже 100 °C, значительная часть атмосферной влаги пролилась ливнями, заполнив океанические выемки. Вместе с водой в океаны и на поверхность переместилась синтезированная в атмосфере органика. Эта органика вместе с органикой, поступавшей непосредственно из космоса, явилась как бы затравкой для процессов, продолжившихся на окончательно застывшей поверхности Земли и в уже не подвергавшихся тотальному испарению океанах. Предположение о существовании в периоды глобального плавления земной коры ниш, в которых сохранялась возможность продолжения и развития эволюционных процессов, позволяет увеличить допустимый срок доклеточной эволюции на Земле до 500 млн лет. Такой срок предполагает, что эволюционный процесс мог быть инициирован еще в период формирования Солнечной системы и с тех пор никогда не прерывался. В связи с этим отметим еще одну достаточно изящную гипотезу сбережения земной жизни на период, когда обрушившийся на планету метеоритный ливень плавил кору и испарял океан: клетки и их споры могли сохраниться в материале, выброшенном в космос при импактах (Gladman et al., 2005). Расчеты показали, что значительное количество этого грунта, в итоге, возвращается на Землю, причем пребывание в космосе какой-то его части может оказаться достаточно длительным для того, чтобы замурованные в грунте клетки вернулись на Землю уже после восстановления на ней совместных с жизнью условий.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 1 Основы эволюции: Дарвин и синтетическая теория эволюции
Глава 1 Основы эволюции: Дарвин и синтетическая теория эволюции Пер. А. НадирянВ этой и следующей главах дается краткое описание современного состояния эволюционной биологии, какой она была до 1995 года, когда возникло новое направление науки — сравнительная геномика.
Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции
Глава 2 От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции Пер. А. НестеровойВ этой главе мы продолжим обсуждение эволюционной биологии в период до появления геномики. Многие из обсуждаемых направлений развития не являлись
Глава 9 Ламарковский, дарвиновский и райтовский режимы эволюции, эволюция эволюционируемости, надежность биологических систем и созидательная роль шума в эволюции
Глава 9 Ламарковский, дарвиновский и райтовский режимы эволюции, эволюция эволюционируемости, надежность биологических систем и созидательная роль шума в эволюции Пер. Д. ТулиноваДрама ламаркизмаКак уже отмечалось в предисловии к данной книге, одной из ключевых заслуг
Радиационные изменения кроветворения в ближайшие и отдаленные сроки
Радиационные изменения кроветворения в ближайшие и отдаленные сроки При анализе процессов восстановления гематологических показателей у человека после острой лучевой болезни (средней степени тяжести) мы обратили внимание на то, что они восстанавливаются значительно
Сроки полового созревания и рациональное использование производителей
Сроки полового созревания и рациональное использование производителей Вопрос о сроках включения собак в разведение неожиданно приобрел острый дискуссионный характер. Некоторые собаководы, по-видимому, не знают (или намеренно забывают) о том, что сроки полового
Сроки готовности к спариванию и методы их определения
Сроки готовности к спариванию и методы их определения Очевидно спаривание будет иметь успех в период от овуляции первых яйцеклеток до тех пор, пока способность к оплодотворению сохраняют последние поступившие в яйцевод ооциты. Количество яйцеклеток, которые возможно
ВОЗМОЖНЫЕ ЭКСПЕРИМЕНТЫ
ВОЗМОЖНЫЕ ЭКСПЕРИМЕНТЫ 1. Прежде всего, крайне важно повторить эксперименты Маре со стальной пластиной. Действительно ли восстановительные работы, проводимые насекомыми по обе стороны плиты, координируются так, как описывает Маре?Этот эксперимент вряд ли осуществим в
Возможные последствия рассогласования этапов
Возможные последствия рассогласования этапов Хотя понятие «пол» определяется как «совокупность взаимно контрастирующих … признаков», строго говоря, он не является альтернативным признаком, т. е. далеко не все особи обладают признаками исключительно одного
2.3. Атмосфера ранней Земли и ее роль в доклеточной эволюции
2.3. Атмосфера ранней Земли и ее роль в доклеточной эволюции Самым распространенным элементом во Вселенной является водород. В газово-пылевой туманности, из которой сформировалась Солнечная система, также преобладал водород. Поэтому естественной была гипотеза Опарина и
2.5. Возможные пути предклеточной эволюции
2.5. Возможные пути предклеточной эволюции Было бы большим упрощением полагать, что описанная выше химическая эволюция, в ходе которой накапливались все более сложные органические соединения, непосредственно предшествовала клеточной эволюции, т. е. появлению жизни. На
7.1. Эволюция приматов; возможные пути эволюции гоминин после их отделения от шимпанзе
7.1. Эволюция приматов; возможные пути эволюции гоминин после их отделения от шимпанзе 7.1.1. Ранние предшественники современных людей Плацентарные млекопитающие появились по разным данным 150–100 млн лет тому назад (Kumar and Hedges, 1998; Archibald et al., 2001; Douzery et al., 2003; Wible et al., 2007), т. е.
8.2.3. Возможные космические катастрофы, которые способны уничтожить жизнь на Земле
8.2.3. Возможные космические катастрофы, которые способны уничтожить жизнь на Земле Вначале упомянем о событиях, которые могут коснуться именно Земли.Установлено, что постоянно происходит замедление вращения Земли вокруг своей оси (см. Раздел 2.2). Через пока трудно
8. ВОЗМОЖНЫЕ ПОБОЧНЫЕ РЕАКЦИИ (ОСЛОЖНЕНИЯ) РАЗГРУЗОЧНО-ДИЕТИЧЕСКОЙ ТЕРАПИИ; ПУТИ ИХ ПРЕДУПРЕЖДЕНИЯ
8. ВОЗМОЖНЫЕ ПОБОЧНЫЕ РЕАКЦИИ (ОСЛОЖНЕНИЯ) РАЗГРУЗОЧНО-ДИЕТИЧЕСКОЙ ТЕРАПИИ; ПУТИ ИХ ПРЕДУПРЕЖДЕНИЯ При методически правильном проведении РДТ осложнения встречаются редко. Они не опасны для жизни, в подавляющем большинстве случаев их можно предупредить, а при появлении