С Дарвином

«Единый план» отживал свое время, «теория типов» хотя и держалась, но претерпела такие изменения (хотя бы в форме удвоения числа типов), что по существу уцелело только название. Клеточная теория явилась новым объединяющим моментом, но не дала систематикам надлежащей опоры. Никто не мог понять, что изучение животного и растительного мира, взятых отдельно от жизни Земли в целом, не может вывести науку из тупика. Сколько бы фактов ни накопилось, они не объяснят того, как произошли животные и растения, как они развивались. Не зная этого, нельзя дать естественную систему, система же — главнейшее обобщение описательной зоологии.

История Земли объяснялась теорией катастроф Кювье. И пока эта теория существовала, зоологическая и ботаническая системы не могли быть иными, чем какими они были. В середине XIX в. предлагалось немало систем и классификаций, и все они примерно одинаковы, все неудачны, и перечислять их нет смысла. Удачи не могло быть: основы для построения системы не было.

В 1831 г. теория катастроф получила такой удар, от которого она не смогла оправиться. Удар был нанесен книгой Чарлза Лайела «Основы геологии». Ч. Лайел (Ch. Lyell, 1797–1876), знаменитый английский геолог, один из «духовных отцов» Дарвина, показал в своей книге, что лик Земли изменялся и изменяется не путем катастроф, а совсем иначе.

Континенты не исчезают внезапно, горы не взлетают одним взмахом под облака. Самые грандиозные изменения рельефа — результат «слабых сил», действовавших тысячелетиями. Дует ветер, идет дождь, море бьется о берега, глина и песок осаждаются на дне рек, озер и океанов. Проходят тысячи и тысячи лет, и на месте горной цепи оказывается равнина, море мелеет, а кое-где вырастают известковые горы, слои извести, накопившейся на дне океана за сотни тысяч лет. Тысячи «мелочей», накапливаясь, приводят к «большим делам». Земля изменялась и изменяется медленно и постепенно.

Конечно, сторонники Кювье дали не один бой теории Лайела. Победил Лайел. И как только его учение дошло до сознания палеонтологов, так стала ясной ненужность идей о катастрофической гибели животных, о новых «нарождениях» их. Отсюда шаг до мыслей о том, что и животные медленно изменяются, что ископаемые потому и непохожи на современных, что эти сильно изменились в течение тысячелетий, отделяющих тех от этих. Но с мыслью об изменениях все же часто связывалось представление об изменениях быстрых, заметных для глаза. Как выяснить историю изменений, растянувшихся на сотни тысяч лет? Около тридцати лет прошло в таком положении: умерли теории «творческих актов», умерли «единые планы», но на замену им ничего еще не было.

Разрешением «проклятого вопроса» была книга «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь» (1859) английского натуралиста Чарлза Дарвина (Ch. Darwin, 1809–1882). Биография Дарвина общеизвестна, а потому не будем на ней останавливаться.

Ч. Дарвин (1809–1882) в своем саду в Дауне.

Все живое изменяется, его «вчера» не такое, как «завтра». Ряд животных — не результат бесчисленных вариаций на одну и ту же тему и не несколько замкнутых в себе «ответвлений», — это ветви одного дерева. Целесообразность живого, та самая целесообразность, в которой одни видели лучшее доказательство премудрости творца, а другие — проявление загадочного «мирового разума», оказалась результатом такого вульгарного явления, как борьба за жизнь. Колючки пустыни и розы, солитер и райская птица, разнообразие и причудливость форм, яркость окраски — все это лишь «отбор». Сходство в строении — не проявление «единого плана», а просто результат родства. Даже человек, «обладатель бессмертной души и божественного разума», и тот… Книга была наполнена доказательствами, а из приведенных в ней бесчисленных фактов многие оказались хорошо знакомыми всем и каждому. Их только не так толковали, а то и просто не задумывались над ними. Словно солнечный лучик попал через щель в темную комнату, и невидимые до того пылинки вдруг заиграли в светлой полоске. Удивительная была эта книга с длинным и скучным названием!

Первые же годы показали, насколько была нужна книга Дарвина. Эволюционное учение — вот предпосылка, в которой все так нуждались и для выработки мировоззрения и для построения естественной системы.

Само по себе взятое эволюционное учение не было новостью. У Дарвина — ряд предшественников. Кое-что говорил об эволюции Бюффон, но его запутанные фразы не привлекли особого внимания, да и кого могли удовлетворить просто «слова», к тому же плохо увязанные. Провозгласил эволюционное учение Ламарк, но он не сумел довести его до читателя, а читатель не был подготовлен к такому «новшеству», да и время было неподходящее — дни власти Наполеона. Блистательный Кювье, разгромив «единый план» Сент-Илера, заодно разгромил и эволюционную теорию Ламарка и надолго занял умы своими теориями типов и катастроф, столь удачно согласованными с библией. Немцы охотно называют Гете как основателя эволюционной теории, «забывая» при этом следующее: Гете только под конец жизни освоился с идеей, что высшие животные и человек развились из низших, что сходство форм основано на кровном родстве, до того он был сторонником «теории типов», т. е. совсем не эволюционистом. Большой интерес вызвала книга «Следы естественной истории творения», вышедшая в 1844 г. и выдержавшая ряд изданий, причем только в 1884 г. (последнее издание) узнали, что автор ее не ученый, а писатель — Роберт Чемберс. В этой книге излагалось нечто вроде эволюционной теории, но разработана она была слабо и слишком спекулятивно; ученые не обратили особого внимания на книгу столь туманного содержания, а через 15 лет она была «погашена» учением Дарвина.

Дед Дарвина — Эразм Дарвин (1731–1802) — высказал эволюционные идеи в своих поэмах («Зоономия, или законы органической жизни», 1794, 4 тома, также и в посмертной поэме «Храм природы», 1803), но идеи эти высказаны туманно и отрывочно, это только намеки, а не стройная теория. К тому же, то были «поэмы».

Можно найти, кое-что «эволюционное» у древних (Эмпедокл, Гераклит, Лукреций Кар и другие); в своем историческом обзоре научных мнений о происхождении видов Дарвин приводит вообще немало имен, причем кое-кто (Уэдэ, Патрик, Матью, Ноден) довольно близко подходил к идее Дарвина — принципу отбора. Но все это — разрозненные мысли, намеки и предположения, а не теория, не учение. Они, эти намеки, заметны и понятны нам теперь, когда мы ищем в них того, что хотим найти. Но без дарвиновской теории никто и не замечал толком этих намеков. Однако «намеки» подготовили тот прием, который встретила теория Дарвина. Впрочем, Дарвин опубликовал свою теорию «во-время»: тридцать лет раньше, и как бы она была встречена?

Конечно, были противники, были возражения и «опровержения», но они направлялись и направляются по адресу теории естественного отбора; самая теория эволюции прочно овладела умами.

Эволюционная геология, эволюционная биология пошли со времен Дарвина рядом, и зоология получила, наконец, ту предпосылку для построения естественной системы, в которой она так нуждалась. Это не значит, что через год-другой появилась такая система, что ее сумели построить. Нет, это означает только — явились возможности для построения такой системы. Как раз через четыре года, в 1863 г., появилась система Ю. Каруса (см. выше), и по ней можно судить о том, насколько еще трудно было дать систему естественную. Ошибки Каруса — результат недостаточной изученности длинного ряда форм.

Можно ли назвать Алфреда Уоллэса (A. Wallace, 1823–1913) стопроцентным дарвинистом? Он соперник Дарвина в создании теории происхождения видов, чуть было не выхвативший у него пальму первенства, и он же — сторонник божественного происхождения души человека и первого живого существа. Естественный отбор и почти библейский Адам, теория полового отбора и спиритизм, государственная собственность на землю и… достаточное количество приносящих хорошие дивиденды акций. Сложная это смесь — человек, носивший имя Уоллэса.

А. Уоллэс (1823–1913) перед путешествием на Малайские острова.

Высшего образования Уоллэс не получил. Он побывал в учениках у землемера, ломал часы под руководством часового мастера, потом работал то землемером, то школьным учителем, и наконец, соблазненный энтомологом Бэтсом (Н. W. Bates, 1825–1892), сделался натуралистом. Вместе с братом и Бэтсом он ездил в Южную Америку, где провел 4 года, собирая птиц и насекомых. Вернувшись оттуда уже настоящим натуралистом, Уоллэс в скором времени отправился на острова Малайского архипелага (1854–1862), откуда вывез не только богатейшие коллекции, но и стопку записных книжек, наполненных разнообразными заметками.

Именно на этих островах он написал короткую статейку, приведшую в такое смятение Дарвина и его друзей: в статейке излагалась теория эволюции путем отбора. Впрочем, друзья Дарвина, геолог Лайел и ботаник Гукер, устроили так, что «первого» не оказалось: статейку Уоллэса напечатали, а рядом с ней появилась и статья Дарвина. Уоллэс, человек скромный, охотно уступил Дарвину первенство; он хорошо знал, что ему не разработать теории так подробно, как это сделал его соперник.

Уоллэс написал много книг, преимущественно связанных с учением об отборе, причем кое в чем оказался «сверхдарвинистом», а кое-где — почти антидарвинистом. Его книга «Малайский архипелаг, родина орангутанга и райской птицы» полна интереснейшими биологическими наблюдениями. Наибольшая заслуга перед зоологией (если не считать огромных сборов животных на Малайских островах) — его сочинение «Географическое распространение животных» (1876)[70], где он рассматривает зависимость географического распространения животных от всякого рода физических условий и привлекает геологию к выяснению ряда вопросов современного распространения животных.

Зоогеография — и очень старая и очень молодая наука. Еще в 1605 г. Вирштген предполагал, что животные Англии проникли сюда из Европы в те времена, когда этот остров соединялся с материком. Линней полагал, что был остров, а посредине его гора. На вершине горы созданы полярные животные, у подножия (остров помещался в тропиках) — тропические. Море обмелело, и животные разбежались, заняв на земле предназначенные им места: полярные животные попали на север и на вершины гор, тропические — в тропики и т. д. Циммерман (Е. Zimmermann) отрицал (1777) линнеевскую «гору-остров» и полагал, что у каждого вида есть свой центр распространения[71]. Примерно тех же взглядов держался и Бюффон. Иллигер (J. С. Illiger, 1775–1815) разделил земной шар на две части (1811) — северную и южную, чт?, конечно, зоогеографическими областями назвать никак нельзя[72]. Свенсон в 1835 г. поделил Землю на пять областей, сообразно распространению человеческих рас, а Шмарда (L. Schmarda) различал (1853) 31 область (21 область на суше и 10 в морях)[73].

Изучая распространение птиц, Склэтер (P. L. Sclater, 1858) установил зоогеографические области[74], которые в главных чертах принимаются и теперь: Палеарктическая (Европа, С. Азия, север Африки), Эфиопская (Африка, кроме севера, и прилежащие острова), Индийская (тропическая Азия и прилежащие острова), Австралийская (Австралия с ближайшими островами), Пацифическая (Полинезия и другие мелкие острова Тихого океана), Неоарктическая (С. Америка, кроме Мексики), Неотропическая (Центр. и Ю. Америка).

Уоллэс придерживался склэтеровского деления[75]. Он установил границу между Индийской и Австралийской областями, так называемую «линию Уоллэса»: она проходила через Ломбокский пролив между островами Ломбок и Бали, через Макассарский пролив между Борнео и Целебесом и огибала с юго-востока Филиппинские острова. По одну сторону «линии» лежала Индийская, по другую — Австралийская области, разграниченные якобы так резко, словно «уоллэсовская линия» была высочайшей стеной. Однако позже «линия» была развенчана: ее не только сильно отодвинули на восток (к Банде и Тимору), но оказалось, что она вовсе уже не так «резка».

После Уоллэса границы, да и самое количество областей неоднократно изменялись. Н. А. Северцов (1877) предложил новую область — Китайско-гималайскую[76], которую позже А. П. Семенов-Тян-Шанский назвал Палеанарктической, а еще позже — Палеархеарктической, причем из области она превратилась в подобласть Палеарктики. Ввели Антарктическую область, а Палеарктику и Неоарктику начали соединять вместе под названием Голарктики (Гейльприн, A. Heilprin, 1882)[77]. Лидекер (R. Lydekker, 1896) различал три суши: нотогею (австралийская, полинезийская, австро-малайская и гавайская области), неогею (неотропическая область) и арктогею (эфиопская, голарктическая область и юг С. Америки)[78]. И по сей день нет общепринятой схемы деления Земли на области, не говоря уже о подобластях и провинциях. Причины понятны: зоогеографические области — области исторические; у фауны любой области есть свое прошлое, она результат его, и оставлять в стороне это прошлое никак нельзя. Зоогеографы же в большинстве оперируют только с современной фауной, смешивая к тому же нередко особенности, вызванные в общем характере фауны ландшафтом местности, с особенностями, связанными с ее историческим прошлым.

* * *

Первую попытку серьезного применения дарвиновских начал к изучению развития животных сделал Фриц Мюллер (F. M?ller, 1822–1897). Врач по образованию, он не получил диплома, так как отказался принести присягу, в которой значились слова «как того требует господь и святейшее его евангелие», — Мюллер был атеистом. Разрыв с церковью, ссоры из-за этого с родственниками, да еще «свободный брак» сделали жизнь на родине, в Германии, невозможной. В 1852 г. Мюллер уехал в Ю. Америку. Здесь он одно время вел жизнь почти что Робинзона, затем читал лекции в высшей школе, а с 1867 г. занимался почти исключительно зоологическими и ботаническими исследованиями.

Фриц Мюллер (1822–1897).

В Бразилии Ф. Мюллер исследовал ракообразных, занимался анатомией и эмбриологией морских беспозвоночных, выяснял взаимоотношения цветов и насекомых. В книге «За Дарвина» (1864)[79] он дал, между прочим, обзор значения эмбриологических признаков для классификации, причем подтвердил свои выводы рассмотрением развития ракообразных. Было бы слишком длинно перечислять все возражения и поправки, которые делает Ф. Мюллер в связи с воззрениями Иоганна Мюллера и Агассица на значение эмбриологии и ее отношение к сравнительной анатомии и систематике. Он отрицает возможность построения естественной системы на основе одной только эмбриологии и приводит в доказательство своей правоты образец — сделанную им эмбриологическую классификацию ракообразных. Пример убедительный: получилось «нечто», имеющее мало общего с родственными отношениями групп. Причину искусственности всех таких классификаций Ф. Мюллер видит в том, что положения эмбриологической классификационной школы односторонни, что при оценке хода явлений развития эта школа не считается с соотношениями развития животных и внешних условий, пытается обойтись без Дарвина (этот упрек условен, так как большинство критикуемых им эмбриологических систем появилось до Дарвина).

Результатом наблюдений и обобщений Ф. Мюллера явился важный вывод. Найдя у одних ракообразных личинку формы науплиус, у других — зоея, он предположил, что эти личинки напоминают предков современных ракообразных. Там, где стадии науплиус нет, — развитие укоротилось в более поздние времена. Индивидуальное развитие повторяет историю развития вида. Эта прошлая история сохраняется тем полнее и отчетливее, чем длиннее ряд стадий превращений, чем меньше образ жизни молоди отличается от такового взрослой формы и чем меньше данный вид имеет личиночных стадий, выработанных «самостоятельно в процессе борьбы за существование», т. е. новоприобретенных.

Ф. Мюллер впервые установил связь между историческим и индивидуальным развитием, первый указал на важность изучения развития особи для выяснения исторического прошлого данного вида, иначе — он первый представитель филогенетического направления. Через несколько лет Э. Геккель заявил, что «онтогения повторяет филогению», и объявил это положение «биогенетическим законом», присоединив к нему, конечно, свою фамилию.

Согрешил эмбриологической системой и Гексли, причем он же дал и другую, обычную систему, — случай, нередкий вообще: многие зоологи давали по нескольку систем, иногда сильно разнящихся. Гексли был одним из страстных проповедников теории Дарвина, он даже съездил в Америку, чтобы поагитировать в пользу своего друга в стране, отнесшейся к дарвинизму мало доброжелательно.

Томас Гексли (Th. Huxley, 1825–1895), сын школьного учителя, на 21-м году оказался морским врачом. В морском госпитале он попал под начальство сэра Джона Ричардсона, натуралиста и исследователя полярных стран, над который подшучивал при всяком удобном и неудобном случае. Полярник, то ли желая отплатить за зло добром, то ли стремясь отделаться от насмешника, пристроил Гексли врачом на корабль «Рэттльснэк», отправлявшийся в Австралию. Корабль проплавал четыре года, и три из них — возле берегов Австралии и Новой Гвинеи, исследуя Великий барьерный риф. Изумительная фауна австралийских морей поразила молодого врача, и он увлекся исследованием полипов и кораллов, медуз, сальпов, моллюсков — всего, чем кишмя кишели заросли губок и кораллов на «банках» по соседству с Великим рифом. Еще с корабля он отправил в Лондон несколько научных работ, а по возвращении рассчитывал издать огромный труд. Но лорды Адмиралтейства не согласились печатать труды Гексли, они только пообещали ему сделать это, если он… проплавает еще годика четыре на другом корабле. Гексли рассердился и подал в отставку.

Т. Гексли (1825–1895).

С 1854 г. Гексли начал работать как профессор, причем читал лекции по ряду наук — палеонтологии, сравнительной анатомии, геологии, естественной истории вообще. В 1853 г. его избрали членом Королевского общества, где он занял в 1883 г. должность президента. Наконец в 1892 г. он получил только что установленный почетный титул «первого ученого» — наивысшее отличие для ученого в Англии.

С первых же дней знакомства с теорией Дарвина Гексли сделался ярым дарвинистом, хотя и не во всем соглашался с Дарвином. Прекрасный оратор и искусный спорщик, он всюду выступал «за Дарвина», способствуя успехам дарвинизма, и особенно прославился во время знаменитого диспута о дарвинизме 30 июля 1860 г., когда сумел переспорить «самого» епископа Уильберфорса, не только важную персону, но и замечательно ловкого спорщика.

Гексли издал множество работ по зоологии, сравнительной анатомии, эмбриологии, палеонтологии и антропологии. Он написал и несколько учебников, руководств и ряд популярных статей и книжек. Его зоологические работы — мемуар о медузах, исследования червей, сифонофор, иглокожих, простейших, моллюсков, полипов. Он провел аналогию между наружным и внутренним зародышевыми листками и эктодермой и энтодермой медуз, чем немало помог «биогенетическому закону». Характеризовал кишечнополостных наличием у них стрекательных органов, указывал, что иглокожие должны быть отделены от кишечнополостных, отделил оболочников от моллюсков, показал, что гидрополипы и гидромедузы — близкая родня и должны быть объединены в одной группе. Его исследования по истории развития многих беспозвоночных не только дали ряд новостей, но и помогли ему составить новую классификационную схему.

Как сравнительный анатом, Гексли показал фантастичность позвоночной теории Гете — Окена — Оуэна, доказав, что сегментация черепа высших позвоночных — вторичное явление и уже по одному этому никакого отношения к позвонкам не имеет. Палеонтологические исследования Гексли охватывают девонских рыб, триасовых пресмыкающихся, а кроме того, ракообразных, белемнитов, глиптодонтов, генеалогию лошади.

Наконец, Гексли издал ряд сочинений «общего порядка» — о положении человека в ряду органических существ, о причинах явлений в органическом мире и т. д. Дарвинист, а по уверениям врагов и «атеист», материалист в пределах проблем естественной истории, Гексли сам называл себя «агностиком», когда дело касалось основных вопросов мировоззрения: «я не знаю» — вот позиция агностика («я-незнайки») — в таких случаях («никогда не будем знать», заявляли более «убежденные» агностики). Энгельс очень ценил Гексли как борца за дарвинизм и, очевидно, поэтому называл его сравнительно мягко — «стыдливым материалистом».

Эмбриологическая классификация Гексли[80] интересна тем, что в ней впервые появились термины, играющие большую роль в новейших системах, а именно — вторичноротые (Deuterostomia), энтероцельные (Enterocoelia), правда, имевшие у Гексли несколько иное, чем теперь, значение. Приведение таких моментов, как манера образования полости тела и окончательного рта, резко отличает классификацию Гексли от таковых Бэра и Кёлликера.

A. Protozoa. Одноклеточные животные.

B. Metazoa. Многоклеточные животные.

I. Agastraeades. Без пищеварительной полости (ленточные черви, скребни).

II. Gastraeades. С пищеварительной полостью.

1. Polystomia. Много ртов (губки).

2. Monostomia. Один рот.

a) Archaeostomia. Древнеротые (первичный рот, бластопор, превращается в окончательный).

х) Coelenterata. Кишечнополостные: ктенофоры, гидроиды, кораллы и медузы (Ctenophora, Anthozoa, Hydroidea).

хх) Scolecimorpha. С общей полостью тела: турбеллярии, круглые черви, сосальщики, пиявки, малощетинковые, кольчецы,? коловратки,? гефиреи. (Turbellaria, Nematoda, Trematoda, Hirudinea, Oligochaeta,? Rotifera,? Gephyrea.)

в) Deuterostomia. Вторичноротые (окончательный рот не образуется из первичного, или бластопора).

х) Enterocoelia. Энтероцельные (полость тела развивается энтероцельным путем): щетинкочелюстные, плеченогие, кишечнодышащие, иглокожие. (Chaetognatha, Brachiopoda, Enteropneusta, Echinodermata.)

xx) Schizocoelia. Расщепнополостные (полость тела образуется расщеплением в мезодерме): членистоногие, кольчатые черви, моллюски, мшанки. (Arthropoda, Annelida, Mollusca, Bryozoa.)

xxx) Epicoelia. Эпицельные (внутренняя полость тела и невральная полость, по крайней мере у зародыша): оболочники, бесчерепные, позвоночные. (Tunicata, Leptocardia, Vertebrata.)

Кроме эмбриологической системы, Гексли дал и обычную классификацию животных. Он приводит 8 типов. Иглокожие объединены с низшими червями и коловратками, так как личинок некоторых иглокожих в то время считали схожими с личинками плоских червей и коловраток. Любопытно, что губок Гексли считал за колониальных простейших, почему и отнес их к этому типу. Одноклеточные разделены им на два типа: простейших и инфузорий (к которым присоединены и жгутиковые). Основой для такого деления послужила ошибка: макронуклеус инфузорий принимали тогда за яичник, а микронуклеус — за семенник.

1. Простейшие (Protozoa): корненожки, споровики, губки. — 2. Инфузории (Infusoria): инфузории, жгутиковые. — 3. Кишечнополостные (Coelenterata). — 4. Кольчатовидные (Annuloida): плоские черви, круглые черви, коловратки, иглокожие. — 5. Кольчатые (Annulosa): кольчецы, членистоногие. — 6. Моллюсковидные (Molluscoidea): плеченогие, шпанки, оболочники. — 7. Моллюски (Mollusca). — 8. Позвоночные (Vertebrata).

Однажды Гексли увидал маленький буксир, тащивший за собой огромный пароход. «Это воплощение труда, — сказал он. — Я хотел бы, если бы не был человеком, быть таким буксиром». И он сделался им, нашел свой грузовой пароход. Теория Дарвина — вот он, этот огромный пароход, который потащил буксир-Гексли. Он тащил его без особого шума, честно и скромно.

Не таков был Эрнст Геккель (E. Haeckel, 1834–1919) — этот не страдал излишней скромностью. Мало того, задавшись целью «доказать» правильность учения Дарвина (иначе — взяв на себя роль буксира), он проповедовал совсем не то, чему учила теория, в верности которой он клялся, при всяком удобном случае. Подменив учение Дарвина своим (смесью дарвинизма и ламаркизма плюс всякие личные гипотезы), Геккель проповедовал не дарвинизм, а геккелизм. И он сбил с толку столько народу своей проповедью, что позже целое поколение ученых разбиралось в этой путанице и тратило годы и годы, старясь отделить «дарвиновское» от «геккелевского». К сожалению, эта работа не кончена и теперь.

Э. Геккель (1834–1919).

Эрнст Геккель с детства увлекался естествознанием, но обучался, согласно воле отца, на медицинском факультете. В числе его учителей значатся такие величины, как Вирхов, Лейдиг и даже Иоганн Мюллер. Медицина его привлекала мало, и, окончив курс в 1857 г., он через два года очутился в Италии, где занялся изучением морских беспозвоночных, в особенности же радиолярий (влияние И. Мюллера, очень любившего этих красивых простейших). В 1861 г. Геккель — доцент, а через несколько лет и профессор в Иене, с которой он не расставался до конца своей жизни.

Как зоолог Геккель работал над радиоляриями, медузами, роговыми губками, сифонофорами. Огромные материалы экспедиции «Челленджера» по губкам, медузам и радиоляриям обработаны им. В своей монографии радиолярий Геккель привел 4318 видов, из них — 3508 новых. Хороший художник, он сам иллюстрировал свои зоологические работы, и его рисунки радиолярий и медуз великолепны. Однако техника микроскопического исследования у Геккеля сильно хромала, он предпочитал рассматривать неокрашенные объекты, а потому иногда принимал за безъядерные формы простейших, обладающих ядрами, делал и другие промахи, обязательные при таком примитивном методе работы. Это не мешало ему, однако, признавать такие «безъядерные» формы за действительно существующие и видеть в них чуть ли не первоисточник всего живого.

Использовав работы А. Ковалевского по развитию ланцетника и асцидий, Геккель объединил этих животных вместе с позвоночными в один тип, который назвал «типом хордовых». В этом не было особой заслуги: после работ Ковалевского такое «открытие» само шло в руки. Геккель же ввел термин «многоклеточные» (Metazoa), противопоставив ему одноклеточных, т. е. простейших.

В своем труде о теории гастреи (гипотетической исходной форме многоклеточных животных)[81] Геккель сделал попытку характеристики различных групп животного царства на основании форм дробления желтка. Нет смысла приводить эту «классификацию», достаточно указать, что в одной группе оказались губки, гидроидные, медузы, нематоды, большинство иглокожих, плеченогие, оболочники, бесчерепные, в другой — сифонофоры, ктенофоры, планарии, кольчатые черви, большинство моллюсков, круглоротые, ганоидные, амфибии. Этого примера достаточно: Э. Ван-Бенеден еще раз оказался прав.

Геккель — если и не создатель, то первый крупный проповедник филогенетического направления в систематике, положивший начало целому лесу из всяческих «родословных древ». Любовно вычерчивая такие «древа», Геккель не допускал «пробелов», и там, где они оказывались, бесцеремонно заполнял их «предполагаемыми» формами, всякими «гастреадами», «мореадами», «бластеадами» и т. п. В этих «деревьях» было не меньше фантазии, чем правды, но они имели большой успех и сильно способствовали продвижению эволюционного учения в биологии.

Системы животных Геккель давал неоднократно. В своей «Систематической филогении» (1894–1896)[82] он принял 10 типов. Кольчатые черви попали в тип членистых, оболочники — особый тип, а остальные низшие хордовые отнесены к червям, куда вошли и все червеобразные (моллюсковидные), но плоские черви выделены в особый тип. Единственное достижение этой системы — выделение губок в особый тип; типы же «червей», «членистых» и «позвоночных» явно искусственные.

«Основной биогенетический закон», сформулированный в сущности не им, а Фрицем Мюллером, Геккель считал действительно «основным» и действительно «законом». Это повлекло за собой сильное развитие эмбриологических исследований, приведшее к ряду важных открытий, из-за которых, в свою очередь, «закон» был позже сильно переработан.

Широкую славу Геккель получил, конечно, не трудами о медузах и радиоляриях, — фолианты трудов экспедиции «Челленджера» доступны только специалистам и интересны лишь им. Громкую известность принесли популярные книги «Чудеса жизни», «Мировые загадки», «Естественная история миротворения»[83], выдержавшие множество изданий в Германии и переведенные на полтора десятка языков, в том числе даже малайский. В них Геккель знакомит читателя с той смесью дарвинизма, наивного механицизма и пантеизма, которую он назвал «монизмом», возведя этот монизм в ранг «монистической религии». Открытые утверждения, что человек — «потомок обезьяны», нападки на церковь и постановку школьного обучения (он требовал обязательного введения в курс средней школы теории эволюции) придавали учению Геккеля революционную внешность и сильно раздражали реакционные круги. Книги Геккеля били по церкви, направляли мысль в сторону материализма, и проповедь его приветствовалась виднейшими деятелями революционного рабочего движения, снисходительно относившимися, за неимением лучшего, к недостаткам книг Геккеля: книги революционизировали умы. Так выросла в наших глазах фигура проповедника дарвинизма, борца с казенной религией и прочими «жупелами», вырос чуть ли не революционер. Да и как было не расти этой фигуре, когда враги дарвинизма, враги материализма, социализма на все лады поносили Геккеля.

Геккель сам сознавался, что он «весьма несведущ в области практической философии — политике, социологии, этике и педагогике». Это не мешало ему, однако, высказывать кое-какие мысли по этим вопросам. Пруссак и поклонник Бисмарка, он, конечно, не мог равнять себя с «демократией». Учение о происхождении видов в его трактовке — учение аристократическое, скажем — юнкерское.

«…каждый рассудительный и непредубежденный человек обязан рекомендовать теорию происхождения видов и вообще эволюционное учение как лучшее противоядие против безрассудной нелепости социалистической уравниловки», — заявил Геккель в своем ответе Вирхову, упрекнувшему Геккеля в «поощрении немецкой социал-демократии». «Лучшие» стоят на вершине эволюционного дерева, и эти «лучшие», конечно, — высшая раса, а из нее — «верхушка» населения. В книге Геккеля «Чудеса жизни» есть 17-я глава «Ценность жизни», а в ней такие фразы (цитирую по переводу со 2-го нем. изд. Н. А. Алексеева, СПБ 1908, стр. 175):

«…разум является, большей частью, достоянием лишь высших человеческих рас, а у низших развит весьма несовершенно или же вовсе неразвит. Эти первобытные племена, например, ведда и австралийские негры, в психологическом отношении стоят ближе к млекопитающим (обезьянам, собакам — собакам! — Н. П.), чем к высоко цивилизованному европейцу; поэтому об их индивидуальной ценности жизни надо судить совсем иначе. Воззрения на этот счет европейских культурных наций, владеющих большими колониями под тропиками, весьма реалистичны и очень несходны с представлениями, еще господствующими у нас в Германии. Наши идеалистические воззрения, возведенные нашей школьной мудростью в неподвижные правила и втиснутые нашими метафизиками в схему их абстрактного идеального человека, очень плохо согласуются с действительными фактами. Этим объясняются многие ошибки нашей идеалистической философии и многие практические промахи, сделанные нами в недавно приобретенных колониях, они были бы избегнуты, обладай мы основательным знанием низкой духовной жизни первобытных народов».

Чем эти фразы не инструкция для колониальной политики Германии времен Бисмарка: поменьше «идеализма» в отношении племен, стоящих «ближе к собаке, чем к человеку».

Большое распространение получила в последней четверти XIX в. система, предложенная Карлом Клаусом (С. Claus, 1835–1899), в упрощенном виде перешедшая даже в XX в. Клаус был профессором зоологии в ряде городов — Вюрцбурге, Марбурге, Геттингене, Вене, заведывал зоологической станцией в Триесте (основанной в 1875 г. по его инициативе). Он занимался преимущественно изучением беспозвоночных, особенно ракообразных и кишечнополостных. Его «Учебник зоологии» (1877, 4-е издание в 1889 г.) выдержал несколько изданий, был переведен на несколько языков, с 4-го издания сделан и русский перевод части его (членистоногие, моллюски, моллюсковидные, оболочники), изданный в 1898 г.[84].

Клаус различает 9 типов: простейшие, кишечнополостные (включая и губок), иглокожие, черви, членистоногие, моллюски, моллюсковидные, оболочники, позвоночные. Эта же система приведена в 3-м издании «Синопсиса животного мира» Иоганна Леуниса (J. Leunis, 1802–1873), переработанного Г. Людвигом (1883)[85]. Ее использовал и Рихард Гертвиг в своем широко известном учебнике зоологии, причем он принял только 7 типов: отнес моллюсковидных и оболочников в качестве дополнения к типу червей (с 10-го издания сделан русский перевод, Москва 1915). В. М. Шимкевич (1858–1923, ср. стр. 280) в своем классическом учебнике «Биологические основы зоологии» (последнее издание в 1925 г.) принимает ту же систему, только называет кишечнополостных «лучистыми» (здесь же и губки) и относит оболочников к типу «хордовых».

Английский зоолог и эмбриолог Рэй-Ланкестер (Е. Ray Lankester) в своей первой сводке «Заметки о эмбриологии и классификации» (1877)[86] разбил червей на три типа (плоских, круглых и кольчатых), отнес оболочников и кишечнодышащих к хордовым, а кроме того, разделил всех многоклеточных (Metazoa) на две основные группы — кишечнополостных (Coelenterata, или Enterocoela) и полостных (Coelomata, или Coelomatocoela). Позже, в девятитомном руководстве по зоологии (1900–1909)[87], он привел уже несколько иную систему, приняв 11 типов, сгруппированных в «ступени», разделы и подцарства. Подцарств в этой системе два — простейшие (с одним типом) и многоклеточные (все остальные типы). Многоклеточные разбиты на два раздела — Parazoa (только губки) и Enterozoa (все остальные многоклеточные). Этот последний раздел разбит еще на две «ступени» — Enterocoela (только кишечнополостные) и Coelomata, т. е. полостные (все типы, кроме простейших, губок и кишечнополостных). В этом разделе 8 типов: нематоидные (Nematoidea), немертины (Nemertina), придатконосные (Appendiculata, с подтипами коловратки, членистоногие, кольчецы), моллюски, иглокожие, щетинкочелюстные, позвоночные. Нужно иметь в виду, что термины «энтероцельные» (Enterocoela), и «целомные» (Coelomata) применяются Рэй-Ланкестером в совсем ином смысле, чем теперь. Под энтероцельными он разумеет кишечнополостных, тогда как теперь этим термином обозначают способ образования целома (энтероцельный способ — одновременное образование в мезодерме и целома и целомальных полосок), откуда энтероцельными можно назвать животных с таким способом образования целома (но только не кишечнополостных). Термин «полостные», или «целомные» (Coelomata), теперь применяется не ко всем двустороннесимметричным, как это делает Рэй-Ланкестер, а только ко вторично-полостным, т. е. в более узком смысле слова (что правильнее).

Луи Агассиц (L. Agassiz, 1807–1873) — своего рода «последний из могикан». Один из крупнейших натуралистов своего времени, он упорно отстаивал неизменяемость видов, был стойким последователем Кювье. Швейцарец, он в 1846 г. переселился в Америку, где и умер. Деятельность Агассица очень разносторонняя: он работал по геологии, зоологии, сравнительной анатомии и палеонтологии, основал музей сравнительной анатомии в Нью-Кэмбридже, создал обширную и очень деятельную школу зоологов в Соединенных Штатах, путешествовал по Бразилии, плавал по Тихому океану. Как геолог он замечателен своими исследованиями по распространению в геологическом прошлом ледников в Швейцарии и других странах: эти работы (1840, 1847) положили начало фактическому обоснованию ледниковой гипотезы, в то время еще отвергавшейся большинством геологов. Как зоолог Агассиц уделял особое внимание рыбам: он изучил множество видов бразильских рыб, издал труды по пресноводным рыбам Европы, его исследования ископаемых рыб (1833–1843) принадлежат к числу классических работ по палеонтологии. На основании строения чешуй он построил классификацию рыб, только в последние годы потерявшую свое значение. Кроме рыб, Агассиц занимался классификацией иглокожих, современных и ископаемых. Любопытно, что он еще в 1859 г., когда мир простейших был изучен сравнительно неплохо, считал туфельку-парамецию, опалину и некоторых других инфузорий молодыми планариями и трематодами, т. е. принимал их за многоклеточных животных.

И наряду со всем этим Л. Агассиц был страстным противником Дарвина и эволюционной теории вообще. В 1869 г. он издал свои «Опыты по классификации»[88], совпавшие по времени с выходом «Происхождения видов». Здесь Агассиц защищает взгляд, что разные соподчиненные группы животных, от типов до видов, не просто «придуманный человеком способ классифицировать и располагать наши знания, чтобы возможно легче ориентироваться в них». Все эти группы «установлены божественным промыслом, как выражения его мышления». Создавая классификации, человек «лишь следовал тому плану, который был положен в основу творения», причем этот план воспроизведен человеком «в несовершенном виде». В 1869 г. «Опыты классификации» были переизданы во Франции, и в этом издании Л. Агассиц отводит критике дарвинизма особую главу (в 1859 г. он, по понятным причинам, писать о дарвинизме еще не мог). «Я считаю это учение противоречащим истинным методам естественной истории и опасным, даже фатальным для развития этой науки». Критика Л. Агассица не имела успеха, но его влияние сказалось на ряде американских натуралистов.

Выяснение филогении — единственная цель сравнительной анатомии по мнению Карла Гегенбаура (С. Gegenbaur, 1826–1903), крупнейшего анатома XIX в., основателя филогенетической сравнительной анатомии, учредителя журнала «Морфологический ежегодник» («Morphologisches Jahrbuch», 1875). Ученик Кёлликера, Гегенбаур был с 1855 г. профессором в Иене, с 1872 г. — в Гейдельберге. Он начал с сравнительной анатомии некоторых беспозвоночных, затем перешел к эмбриологии, причем выяснил, что яйца позвоночных — всегда простые, одиночные клетки. Вскоре он, однако, оставил эмбриологию и занялся исключительно сравнительной анатомией позвоночных. Гегенбаур исследовал различные системы органов, проводил между ними гомологию, а на основании построенных гомологических рядов делал заключения о филогении позвоночных. Физиология и эмбриология оставлялись им в стороне, — Гегенбаур обращал главное внимание на исследование наиболее консервативных систем органов, особенно скелета. Исследовав позвоночник, скелет конечностей и череп, Гегенбаур установил ряды для скелета парных плавников рыб и построил свою знаменитую теорию архиптеригия, объясняющую происхождение парных конечностей позвоночных[89]. Архиптеригий — гипотетическая форма конечности, скелет которой состоит из членистого стержня (оси) и примыкающих к нему, тоже членистых, лучей (см. рис.). Такое устройство как бы воплощается в плавниках — австралийского рогозуба-цератода, двоякодышащей рыбы. Из архиптеригия развились другие формы конечностей, причем высшие их формы (начиная с амфибий) произошли через сокращение числа боковых лучей. Сам архиптеригий — местное изменение жаберного скелета: из жаберных дуг произошли пояса конечностей, из жаберных лучей — скелет свободной конечности (т. е. ось с лучами).

Грудной плавник рогозуба (Ceratodus forsteri):

1–2 — два его первых членика; 3 — боковые лучи; 4 — роговые лучи (изображены только с одной стороны).

Эмбриология не подтвердила этой теории. Факты, на которых она основана, весьма немногочисленны, а из них главный — строение плавников рогозуба, рыбы весьма оригинальной, парные конечности которой обладают исключительным строением. Все же теория архиптеригия пользовалась успехом и долго соперничала с другой теорией происхождения парных конечностей (с теорией «боковых складок»), а сам Гегенбаур так и умер, уверенный в своей правоте. Впрочем, и теория «складок» в настоящее время отвергается.

Позвоночная теория черепа была отвергнута Гегенбауром, давшим новую теорию, с хрящевым черепом низших рыб в основе. Но и здесь были допущены ошибки, почему и эта теория теперь если и принимается, то только с рядом оговорок. Причины неудач ясны и просты. Гегенбаур — комбинация эволюционного морфолога с философом-идеалистом. Натурфилософская подкладка сказалась, и она-то привела к обидным неудачам. Теория архиптеригия долго служила «шорами», мешавшими исследователям видеть то, что есть на самом деле, — авторитет Гегенбаура был колоссален. Она же принесла и большую пользу: при разработке ее найдено много ценных фактов, послуживших для дальнейших исследований и обобщений.

К. Гегенбаур (1826–1903).

Гегенбаур только в начале своей деятельности немного занимался эмбриологией. В сравнительно-анатомических работах он не пользовался эмбриологическим методом, полагая, что эмбриональный материал слишком пластичен, а потому органы зародышей часто изменены вторично и притом значительно сильнее, чем органы взрослых животных. Другие исследователи были настроены менее критически, широко использовали эмбриологический материал и получили замечательные результаты.

Первые крупные сравнительно-эмбриологические исследования и сопоставления, сделанные в свете эволюционного учения, дал англичанин Френсис Бальфур (F. Balfour, 1851–1882), крупный зоолог и один из основателей сравнительной эмбриологии. Его работам придавалось такое значение, что для него была устроена кафедра морфологии животных в Кембридже. Бальфур прожил всего 31 год: он погиб при восхождении на «Белую иглу» в Швейцарии. Его главнейший труд — «Сравнительная эмбриология» (2 тома, 1880–1881).

Блестящие открытия были сделаны гениальным русским зоологом и эмбриологом Александром Ковалевским (1840–1901). Именно ему мы обязаны выяснением положения в системе столь загадочных до того времени плеченогих, асцидий, даже ланцетника. Вместе с И. И. Мечниковым (1845–1916) А. Ковалевский исследовал историю эмбрионального развития многих членистоногих, показав и доказав, что зародышевые листки позвоночных и беспозвоночных гомологичны. Доказательством идеи, что закладка органов у всех многоклеточных животных (кроме разве губок) протекает по одной схеме, А. Ковалевский обессмертил свое имя (о нем и о Мечникове см. стр. 237, 272).

Само собой разумеется, что успехи эмбриологов, гистологов и всех исследователей, пользовавшихся микроскопом, были тесно связаны с прогрессом микроскопии во второй половине XIX в.

Микроскоп со времен Левенгука и других микроскопистов XVII и XVIII вв. был сильно изменен. 1827 год можно считать началом новой эпохи в микроскопии. Именно в этом году Джамбаттиста Амичи (G. Amici, 1786–1863), итальянский физик и ботаник, первый увидевший движение протоплазмы в клетках растений, сконструировал апланатический микроскоп. До того даже лучшие микроскопы Шевалье давали очень неяркие изображения: выпуклая сторона линз объектива в них была обращена в сторону объекта, что вызывало сильную сферическую аберрацию и в результате — ничтожную яркость изображения. Амичи расположил окулярные и объективные линзы так, что их плоские стороны лежали наружу. Этим он почти уничтожил сферическую аберрацию и достиг яркости изображения. Теперь сложный микроскоп одержал победу над простым; до того часто предпочитали именно простой из-за неясности изображений, получаемых в сложном. Амичи изобрел и способ так называемой водяной иммерсии (1840), позже усовершенствованный Е. Гартнаком (1875). Он же заменил отдельные, навинчивающиеся друг на друга, объективы соединенной в одно целое, заранее рассчитанной системой линз и дал указания для вычисления объективов.

Ахроматы, чечевицы объектива из особого стекла (крон- и флинтгляс) появились раньше в телескопах. Но все же еще в XVIII в. этим делом интересовался русский академик Эйлер, а в 1784 г. другой русский ученый, Эпинус, даже представил Академии наук микроскоп с ахроматом — громадину, скорее похожую на телескоп. Голландцы Ван-Дейль (Van Deyl, 1807) и Бильдснайер (Beeldsnyder, 1791) изготовили неважные апохроматы. Усовершенствованы они были Амичи, который, помимо того, в 1860 г. изобрел еще и масляную иммерсию. Наибольшего успеха достигли усовершенствования микроскопа, когда в оптических мастерских Карла Цейсса в Иене появился такой руководитель, как знаменитый физик-оптик Эрнст Аббэ (Е. Abbe, 1840–1905). Приняв участие в работе мастерских, Аббэ разработал теорию изображения в микроскопе, а тем самым и научные основания конструкции этого прибора. В 1878 г. Аббэ изобрел гомогенную иммерсию, в 1886 г. — новые апохроматы. При мастерских, выросших в огромное предприятие, был создан оптический институт, пользующийся мировой славой.

Микротом вначале был так же прост, как микроскоп Левенгука: простой зажим для объекта — два кусочка мягкой пробки, причем срезы делались бритвой «от руки». К концу XIX в. микротом превратился в сложный механизм, где нож укреплен в плоскости, параллельной плоскости объекта, а объект равномерно поднимается с каждым срезом все выше и выше. Машина для резки колбасы — своего рода микротом. Метод заливки начался с простого зажимания объекта между двумя кусочками пробки или сердцевины. Потом пробку заменило мыло, а его — теперешний метод заливки в парафин или целлоидин, причем объект и примененный материал уже составляют одну сплошную массу.

Консервирование в спирте заменилось многочисленными способами фиксации посредством хромовой, осьмиевой, пикриновой и других кислот и самых разнообразных смесей. Простая окраска аммиачным раствором кармина развилась в бесчисленные способы диференциальной окраски, большей частью анилиновыми красками, причем выбор краски и метод окрашивания рассчитаны так, что разные ткани и части клетки выступают вполне ясно.

Усовершенствование микротома и техники срезов позволило получать сериальные срезы: через объект производится ряд последовательных срезов, позволяющих проследить все, имеющееся «внутри» объекта и недоступное иным способам исследования.

* * *

Вторая половина XIX в. принесла разрешение бесконечных споров о постоянном произвольном самозарождении. Третий по счету случай (первый — Реди, второй — Бюффон с Нидгэмом против Спалланцани), — этот спор начался в 1860 г. и закончился, по существу, только в 1874 г. Герой его — Пастер.

Луи Пастер (L. Pasteur, 1822–1895), сын владельца небольшого кожевенного завода и сержанта наполеоновской армии, в годы студенчества увлекался химией и был учеником знаменитого химика Дюм?. Ему было всего 26 лет, когда он прославился своей работой в области химической кристаллографии, разгадав, наконец, загадочное поведение кристаллов паравинной кислоты в поляризованном свете. О значении этого открытия говорит то, что именно оно дало Пастеру кресло академика по отделу минералогии. От химии и кристаллографии Пастер быстро перешел к изучению явлений брожения, т. е. занялся дрожжевыми грибками и другими микроорганизмами. Он доказал, что процесс брожения вовсе не результат каких-то загадочных «движений» атомов разлагающихся белковых веществ, как это утверждал Либих, видевший в брожении только простой химический процесс, а результат воздействия микроорганизмов на бродящие тела. Доказательство Пастера изящно и просто: дрожжевой грибок питался за счет сахара, золы и аммиачных солей. Никаких белковых веществ! Занявшись брожением, Пастер на всю жизнь отдался изучению микроорганизмов. Его замечательные открытия достаточно известны: культура патогенных микробов вне организма, исследование сибирской язвы, прививка от бешенства, раскрытие секретов «болезней» пива и вина.

Спор о самозарождении подготовлялся давно. Знаменитый физик и химик Гей-Люссак (1778–1850), производя анализ газов в жестянках с консервами, обнаружил в них отсутствие кислорода, т. е. подтвердил правильность возражений, что без кислорода самозарождение произойти не может, а потому консервы и не загнивают. Чтобы выяснить роль кислорода, Гей-Люссак со всеми предосторожностями проделал ряд опытов. И результат был всегда одинаков: пузырек воздуха, впущенный в трубку с стерильным веществом, вызывал гниение. Шредер в 1859 г. выяснил, что яичный желток, молоко, мясо портятся после нагревания до 100° в присутствии воздуха, профильтрованного через вату. Но на вопрос «Почему они портятся?» с умиляющей простотой ответил: «Я не знаю».

Наиболее красноречивым проповедником теории самозарождения был французский натуралист Феликс Пуш? (F. Pouchet, 1800–1872). Врач, профессор медицинского факультета и директор естественно-исторического музея в Руане, он провел ряд исследований по явлениям оплодотворения (1842, 1847), за которые получил от Парижской академии премию в 10 000 франков. Пуш? утверждал, что самозарождение — результат гниения, что продукты распада — материал для построения «самозарождающегося» микроорганизма. Споры разгорелись во-всю, и спорщики так надоели Академии, что она назначила премию за разрешение этого вопроса.

Пастер взялся доказать, что самозарождения нет. Он исследовал воздух и обнаружил в нем множество разнообразных микроорганизмов, причем многие из них легко проникали через фильтры из ваты. Проделал еще ряд опытов и наконец изготовил «пастеровскую колбу» с длинным «лебединым» горлышком. Воздух через это горлышко проходил, микробы же в нем застревали, и стерилизованная жидкость оставалась незаселенной. Пастер торжествовал, но не унывал и Пуш?: он работал с сенной настойкой, и ему удивительно везло — в сенном настое микробы обязательно появлялись. Но когда дело дошло до Академии и Пастер потребовал комиссии для расследования опытов Пуш?, то этот на экспертизу не явился. Комиссия признала опыты Пастера достаточно убедительными.

Через десять лет английский врач Бастиан заявил, что ему удалось осуществить самозарождение организмов. Опыты Бастиана отличались от пастеровских только одним: Бастиан работал с сенным настоем. И как у Пуш?, у него всегда появлялись в этом настое микробы, именно — «сенная палочка». Она, и только она! Это и разоблачило обманчивый успех сенной настойки. Споры сенной палочки оказались очень жизнестойкими, кипячение при 100° их не убивало, и, конечно, из этих спор потом развивались бактерии. Пастер прокипятил сенной настой при повышенном давлении, и споры не выдержали 120°. В таком настое все было тихо и спокойно — никаких микробов.

Опыт Реди показал, что уберечь мясо от «червей» нетрудно, — нужно только прикрыть его кисеей. Спор Спалланцани и Бюффона — Нидгэма через несколько десятков лет дал… консервы: Аппер додумался до изготовления консервов (1804–1809), случайно прочитав книгу Спалланцани. Спор Пастер — Пуш? привел к практике стерилизации при повышенном давлении, а отсюда и к пастеризации.

Пастер не был зоологом, но его имя навсегда связано и с зоологией, именно — с зоологией прикладной. Он открыл пебрину — болезнь шелковичного червя, угрожавшую полной гибелью шелководству в южной Франции. Гренаж — основа шелководства — вот вклад Пастера в прикладную зоологию. Раскрытие тайн «проклятых полей», рассадников сибирской язвы, — второй вклад в прикладную зоологию, именно — в скотоводство.

Было бы неуважительным по отношению к Брэму сравнивать его с Бюффоном, говорить, что Брэм — Бюффон XIX в. Брэм — полевой натуралист, Бюффон — только «писатель». Брэм — путешественник, видевший множество животных в их природной обстановке, всю жизнь так или иначе возившийся с живыми животными; Бюффон едва знал окрестности Парижа и своего поместья, и с живыми дикими животными был знаком больше по «Королевскому зверинцу». Брэм чуть ли не половину своей короткой жизни провел с двустволкой за плечами и с биноклем в руке или среди зверей зоопарков, Бюффон — три четверти своей долгой жизни просидел у письменного стола: чернильница и перо — вот «орудия производства» этого натуралиста. Что общего между ними? Разве только то, что оба писали о животных и обоих нужно искать в словаре на букву «Б». Еще с Геснером можно сравнивать Брэма, да и то с большими натяжками.

Альфред Эдмунд Брэм (A. E. Brehm, 1829–1884) — сын пастора Христиана Брэма (1787–1864), одного из крупнейших орнитологов своего времени, знатока европейских птиц, автора трехтомного сочинения о птицах (1821–1822) и обладателя огромной коллекции европейских птиц (свыше 9000 штук). Альфреду было всего 8 лет, когда ему подарили ружье и он застрелил первую птицу — овсянку. Этот день — 2 мая 1837 г, — был днем рождения натуралиста. В комнате студента Брэма всегда были птицы, мелкие звери, но… Странные вещи случаются на свете! В комнате с птицами жил не студент-естественник: Брэм решил сделаться архитектором и с 1843 по 1847 г. прилежно изучал архитектуру.

А. Брэм (1829–1884).

Летом 1847 г. барон фон Мюллер, большой любитель природы и страстный охотник, отправился в Африку. Его спутником был Брэм. Нил просто, Нил Белый, Нил Голубой, Хартум, Кардофан — два года ездил Брэм с Мюллером. А потом Мюллер уехал в Европу, и Брэм до 1852 г. ездил по северо-восточной Африке один, добравшись по Нилу почти до экватора. Архитектура была заброшена; вернувшись в Европу, Брэм три года слушал лекции по естественным наукам в Иене и Вене. В 1856 г. он ездил по Испании, в 1861 г. вместе с герцогом Саксен-Кобургским побывал в Абиссинии, в 1876 г. проехал от Ала-Тау до Западной Сибири до берегов Карского моря, в 1878 г. вместе с австрийским эрцгерцогом Рудольфом охотился в Венгрии и на Дунае, а в 1879 г. побывал с ним же в Испании. Он ездил еще в Норвегию и Лапландию и посетил ряд местностей в средней Европе. В 1883 г. Брэм отправился в Америку, но здесь он только переезжал из города в город, читая лекции, — хотел обеспечить своих детей.

Зоологические сады уже имелись в ряде городов Европы. В Париже еще в 1794 г. существовал Королевский зверинец, затем были устроены зоологические сады в Лондоне (1828), Амстердаме (1838), Берлине (1843), Антверпене (1843). В 1863 г. был открыт зоологический сад в Гамбурге, и Брэма пригласили в директоры этого сада. Здесь Брэм устроил прекрасный аквариум, но ужиться с гамбургскими зоологами не смог: он привык к полной самостоятельности, а они совали свои носы во все мелочи. После ряда ссор, переходивших нередко в форменные скандалы, Брэм в конце 1866 г. отказался от места. Вскоре его попросили устроить аквариум в Берлине. В 1869 г. Берлинский аквариум (даже с морской водой) был открыт и сделался одним из самых популярных учреждений Берлина; публика в него валом валила, так хорошо и занятно было все устроено. И здесь кончилось неприятностями: Брэм не очень экономил деньги, не всегда был точен в отчетах, не любил писать всякие канцелярские бумажки, а на придирки к отчетности отвечал всегда одинаково — скандалом. Пришлось расстаться и с Берлинским аквариумом.

Первый том «Иллюстрированной жизни животных» появился в 1863 г.[90]. Охотники, любители певчих птиц, лесничие, путешественники, ученые — кого только не привлек Брэм к этой работе. Он переписывался со всеми, кто знает животных и любит жизнь леса и болот. Его сотрудником по этому изданию был профессор Эрнст Ташенберг (E. Taschenberg, 1818–1898), крупнейший знаток вредных насекомых, взявший на себя обработку насекомых и пауков; Оскар Шмидт обработал ряд групп беспозвоночных животных, а художники Кречмер и Эмиль Шмидт сделали рисунки. В 1-м издании было 6 томов, оно закончено в 1869 г., а в 1876 г. начало выходить 2-е издание, сильно измененное и дополненное и богаче иллюстрированное.

Кроме «Жизни животных», Брэм издал еще ряд книг — «Путевые очерки о северо-восточной Африке» (1855), «Жизнь леса» (1856, вместе с Россмеслером), «Жизнь птиц» (1861), «Путешествие в Хабеш» (1863), — а также ряд небольших книжек и напечатал множество статей в различных журналах.

После американской поездки Брэм серьезно заболел (брайтова болезнь почек). 11 ноября 1884 г. он умер (от удара).

«Жизнь животных» продолжала издаваться и после смерти Брэма. 4-е немецкое издание, в 13 томах, печаталось трижды (последнее в 1933 г.). Оно вышло под общей редакцией проф. Цур-Штрассена[91], и текст так сильно переработали, что от подлинного Брэма почти ничего не осталось: это только «наследники под фирмой Брэм». Конечно, издание очень выиграло в научности и современности, но оно и проиграло: изложение суховатое, нет того милого, живого, хотя часто и наивного языка, который был так приятен в «старом» Брэме[92].

Брэма часто упрекали в недостаточно критическом отношении к сообщаемым фактам: он-де приводит ряд «охотничьих рассказов», очеловечивает животных, дает много басен, но мало истинной науки и т. д. Правда, в 1-м издании немало грехов всякого рода, но многого в те времена еще просто не знали, кое-что толком не знают и теперь: жизнь животных не так проста, и множество «тонкостей» до сих пор еще не выяснено. Недостаточность чисто научных данных… Но Брэм и не намеревался дать «руководство по зоологии», он писал «жизнь животных», и вопросы анатомии, эмбриологии и систематики его привлекали мало: это не входило в цели и задачи книги. Как наблюдатель и писатель Брэм был достаточно осторожен, и «анекдоты» 1-го издания — это вина и ошибки времени.

* * *

Вторая половина XIX в. — время Ч. Дарвина и К. Маркса, время борьбы двух мировоззрений, время роста капитализма, а в конце века и перехода его в империализм. Все это нашло отражение в зоологии.

Натуралисты, приняв эволюционное учение и не приняв, а то и просто не зная (таких было большинство) учения Маркса, оказались прочно усевшимися между двух стульев, — историзм только в биологии оказался недостаточным. Уйдя от идеалистического «единого плана» и полубожественных россказней натурфилософов начала века, приняв учение Дарвина об отборе, зоологи не сделали главного — не пошли дальше. Механицизм, внешне как будто и материалистический, на деле же грубая пародия на материализм, да витализм для идеалистов — вот куда попали биологи. Отсюда бесконечные ошибки в толкованиях, обобщениях, чуть выходящих за рамки определения видового названия или описания результатов вскрытия: категоризация высших таксономических групп не столько «систематика», сколько «философия», и здесь метод рассуждения, мировоззрение решают все. Особенно ярко отразилось отсутствие диалектического мировоззрения на экспериментальной морфологии.

Корни экспериментальной морфологии — в далеком прошлом. Экспериментировал Спалланцани, экспериментировали Трамблэ и ряд других натуралистов XVIII в., делали кое-что и в более ранние времена, но только анатом Вильгельм Ру (W. Roux, 1850–1924) ясно сформулировал задачи экспериментальной морфологии. Создались школы — Ру, венская школа Ганса Пржибрама (H. Przibram), а во Франции еще раньше существовала школа Лаказа-Дютье (H. Lacaze-Duthiers, 1821–1901), основавшего журнал «Архив экспериментальной зоологии» («Archives de zoologie exp?rimentale», 1872) и две зоологические станции (Росков в Бретани и Баниюль на Средиземном море). Работы Г. Дриша, Ж. Леба, Т. Моргана и многих других составили эпоху, но… все эти исследователи или виталисты, или в лучшем случае — механицисты. Они ставили блестящие опыты, проводили замечательные исследования, но их выводы и обобщения слишком часто оказывались ошибочными: или исследователь «открывал» и доказывал лишний раз существование «жизненной силы» (называемой то так, то эдак, но от того не меняющей своей сути), или же жизненные явления грубо сводились к чисто физико-химическим явлениям, и сложнейший процесс жизни и тех или иных ее проявлений трактовался почти так же, как элементарный химический опыт, проделанный в пробирке. В результате — горы фактов и почти полное отсутствие правильных выводов.

Расцвет капитализма вызвал бурный рост ряда отделов зоологии, особенно тех, которые были нужны для обслуживания потребностей капитала. Колониальная политика, захваты и заселение новых земель, в Африке и на островах Пацифики в особенности, встретились с многочисленными затруднениями, в том числе с разнообразными заболеваниями, вызываемыми паразитарными простейшими. Болезни губили десятки тысяч людей в тропической Африке, Америке, Индии. Улучшение транспорта, позволившее быстро перебрасывать рабочих внутри страны, импорт дешевой рабочей силы из колоний способствовали росту и распространению заболеваний. Рост протистологии — прямой результат всего этого, и конец XIX в. исключительно богат успехами этой науки (ср. стр. 171). Та же история произошла и с паразитными червями, только их изучение началось раньше (стр. 194): паразитных червей достаточно и в Европе. Если дворянин-помещик «философски» смотрел на падеж скота, то предприниматель-капиталист не хотел терпеть убытки от каких-то «глистов», — и, понятно, выяснение истории развития паразитических червей быстрыми шагами пошло вперед. То, чего не могли выяснить веками, было исследовано в течение всего нескольких десятков лет. Пебрина шелковичного червя привлекла внимание к заболеваниям одомашненных насекомых, а грандиозные убытки, понесенные виноделием южной Европы от филлоксеры, полеводством от гессенской мушки и других вредителей-насекомых, послужили толчком к развитию прикладной энтомологии, быстро выросшей в самостоятельный и огромный раздел прикладной зоологии.

Еще Иоганн Мюллер назвал «пелагическими» тех животных, которых так искусно описывали он сам и его ученики, — прозрачных медуз, червей и мелких рачков открытого океана. Но никому в голову не приходило, что и в пресной воде должен быть такой же мир. В 1857 г. Франц Лейдиг (F. Leydig, 1821–1908) начал исследовать прозрачные воды Боденского озера: он хотел найти тех животных-крошек, что полупереваренные наполняли кишечник озерных рыб. Так началось исследование пресноводного планктона вообще и выяснение его роли в жизни рыб в частности. Работы Франсуа Фореля (F. Forel, 1841–1912) на Женевском озере, Э. Цахариаса (Е. Zacharias, 1846–1916) в С. Германии привели к быстрому развитию гидробиологии. Появился ряд пресноводных биологических станций (первая, передвижная, станция была открыта в окрестностях Праги в 1888 г. частным лицом, первая постоянная — открыта на Пленском озере в Германии в 1891 г.), а с 1906 г. начал выходить учрежденный Цахариасом «Архив гидробиологии» («Archiv f?r Hydrobiologie und Planktonkunde»). Число гидробиологических станций теперь превышает 150, причем две трети из них — морские. У нас, в СССР, первая пресноводная станция была открыта в 1891 г. (оз. Глубокое, Московск. обл.), а морская — в 1871 г. (Севастополь); в настоящее время в СССР насчитывается около 50 станций.

Севастопольская биологическая станция Академии наук СССР.

Отметить все мало-мальски значительные путешествия и экспедиции XIX в., давшие что-либо зоологии, невозможно, — слишком много их было. Из экспедиций сухопутных наиболее замечательны исследования Центральной Азии, проведенные русскими путешественниками — Н. М. Пржевальским (1839–1888), П. К. Козловым (1863–1935), М. В. Певцовым (1843–1902), В. И. Роборовским (1856–1910) и другими. Океанографических экспедиций было очень много: за последние 30 лет XIX в. состоялось около 70 только более или менее крупных экспедиций. Наиболее замечательная экспедиция — на английском судне «Челленджер», под руководством крупного зоолога Уивилля Томсона, продолжавшаяся 4 года (1872–1876), проделавшая свыше 130 000 км, обследовавшая Индийский, Тихий и Атлантический океаны и собравшая колоссальные научные материалы. Разработкой материалов экспедиции были заняты около 70 ученых, она продолжалась более 20 лет, а результаты ее составили около 50 огромных томов-фолиантов, десятка которых не поднять среднему человеку.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК