ГМО и биоразнообразие

We use cookies. Read the Privacy and Cookie Policy

ГМО и биоразнообразие

Принципиальным моментом современного этапа селекции является отчетливое понимание того, что базой для ее развития, в том числе и с использованием генно-инженерных приемов, является биоразнообразие.

Эволюция растительного царства шла по пути умножения числа видов и их «экологической специализации». Этот факт указывает на опасность снижения биологического (генетического) разнообразия в биосфере в целом и в агроэкосистемах в частности. Резкое сужение видового и генетического разнообразия уменьшило не только устойчивость растениеводства к капризам погоды и изменениям климата, но и возможность с большей эффективностью утилизировать солнечную энергию и другие неисчерпаемые ресурсы природной среды (углерод, кислород, водород, азот и другие биофильные элементы), которые, как известно, составляют 90-95% сухих веществ фитомассы. Кроме того, это приводит к исчезновению генов и генных комбинаций, которые могли бы быть использованы в селекционной работе будущего.

Одна и та же площадь, подчеркивал Ч. Дарвин (1859), может обеспечить тем больше жизни, чем разнообразнее населяющие ее формы. Для каждого культивируемого вида растений, в связи со своей эволюционной историей и специфичной работой селекционера, характерен свой «агроэкологический паспорт», т.е. приуроченность величины и качества урожая к определенному сочетанию температуры, влажности, освещения, содержания элементов минерального питания, а также их неравномерное распределение во времени и пространстве. Поэтому снижение биологического разнообразия в агроландшафтах уменьшает в том числе и возможность дифференцированного использования ресурсов природной среды, а, следовательно, и реализации дифференциальной земельной ренты I и II типа. Одновременно ослабляется и экологическая устойчивость агроэкосистем, особенно в неблагоприятных почвенно-климатических и погодных условиях.

Известны масштабы бедствия, вызванные поражением картофеля фитофторой и нематодой, катастрофические потери пшеницы из-за поражения ржавчиной, кукурузы в связи с эпифитотией гельминтоспориоза, уничтожением плантаций тростника из-за вирусов и тд.

О резком снижении генетического разнообразия культивируемых в начале XXI столетия видов растений наглядно свидетельствует тот факт, что из 250 тыс. видов цветковых растений за последние 10 тыс. лет человек ввел в культуру 5-7 тыс. видов, из которых всего лишь 20 культур (14 из них относятся к зерновым и бобовым) составляют основу современного рациона населения Земли. В целом же к настоящему времени около 60% продуктов питания производится благодаря возделыванию нескольких зерновых культур, а свыше 90% нужд человека в продовольствии обеспечивается за счет 15 видов сельскохозяйственных растений и 8 одомашненных видов животных. Так, из 1940 млн. т производства зерновых почти 98% приходится на пшеницу (589 млн. т), рис (563 млн. т), кукурузу (604 млн. т) и ячмень (138 млн. т). Из 22 известных видов риса (род Oryza) широко возделывают лишь два (Oryza glaberrima и O.sativa). Аналогичная ситуация сложилась и с бобовыми культурами, валовое производство 25 наиболее важных видов которых составляет всего лишь около 200 млн. т. Причем большая часть из них приходится на сою и арахис, возделываемых в основном в качестве масличных культур. По этой причине в рационе человека значительно уменьшилось разнообразие органических соединений. Можно предположить, что для Homo sapiens как одного из биологических видов в эволюционной «памяти» зафиксирована потребность в высокой биохимической вариабельности пищи. Поэтому тенденция к росту ее однообразия может иметь самые негативные последствия для здоровья. В связи с широким распространением онкозаболеваний, атеросклероза, депрессии и других болезней обращается внимание на недостаток витаминов, тонизирующих веществ, полиненасыщенных жиров и других биологически ценных веществ.

Очевидно, что важным фактором распространения той или иной ценной культуры являются масштабы ее использования. Так, быстрое наращивание площади сои и кукурузы в США и других странах обусловлено производством сотен наименований соответствующей продукции. Задача диверсификации весьма актуальна и для других культур (из сорго, например, стали получать высококачественное пиво, из ржи — виски и т.д.).

Большего внимания в плане решения взаимосвязанных проблем здоровой пищи и повышения видового разнообразия агроэкосистем заслуживает и увеличение площади под посевами таких ценнейших культур, как гречиха (Fagopyrum), обладающая высокими адаптивными возможностями в различных, в том числе неблагоприятных условиях внешней среды, амарант (Amaranthus), лебеда (Chenopodium quinoa), рапс, горчица и даже картофель.

С развитием географических открытий и мировой торговли получила широкое распространение и интродукция новых видов растений. Письменные памятники свидетельствуют, например, о том, что еще в 1500 г. до н.э. египетский фараон Хатшепсут отправил корабли в Восточную Африку с целью сбора растений, используемых при религиозных обрядах. В Японии установлен памятник Taji Mamori, который по приказу императора ездил в Китай для сбора цитрусовых растений. Особую роль в мобилизации генетических ресурсов растений сыграло развитие сельского хозяйства. Из истории США известно, что уже в 1897 г. Niels Hansen прибыл в Сибирь в поисках люцерны и других кормовых растений, способных успешно произрастать в засушливых и холодных условиях прерий Северной Америки. Считается, что именно из России в тот период были интродуцированы в США такие важнейшие кормовые культуры, как костер, свинорой, овсяница, ежа сборная, полевица белая, люцерна, клевер и многие другие. Примерно тогда же Mark Carleton собирал в России сорта пшеницы, из которых харьковский сортотип в течение длительного периода занимал ежегодно в США более 21 млн. акров и стал основой производства твердой пшеницы в зоне Северных равнин (Жученко, 2004).

Введение в культуру новых видов растений продолжается и в настоящее время. В Перуанских Андах обнаружена разновидность люпина (тарви), употреблявшегося в пищу предками современных индейцев, который по содержанию белка превосходит даже сою. Кроме того, тарви устойчив к пониженным температурам, нетребователен к плодородию почвы. Селекционерам удалось получить формы тарви, содержащие менее 0,025% алкалоидов против 3,3% в исходном материале. К числу видов, представляющих экономическую ценность, можно отнести также австралийскую траву (Echinochloa lurnerana), которая может оказаться отличной, не уступающей просу зерновой культурой для очень засушливых зон. Среди перспективных культур заслуживает внимания и вид Bauhinia esculenta, который, как и Psophocarpus tetragonolobus, образует клубни, а его семена содержат более 30% белка и жира. В очень засушливых условиях может быть использован вид Voandzeia subterranea, который не только богат белком, но и более засухоустойчив по сравнению с арахисом, а также лучше противостоит болезням и вредителям. Для засушливых и неплодородных земель из масличных культур перспективным считается вид Cucurbita foetidissima из семейства Cucurbitaceae, а для засоленных пастбищных земель — некоторые виды лебеды рода Atriplex из семейства Chenopodiaceae, которые выделяют избыточную соль через листья.

В настоящее время во многих странах мира ведется активная селекционная работа с щирицей (Amaranthus), забытой культурой инков, в семенах которой по сравнению с используемыми зерновыми колосовыми видами растений содержится вдвое больше белка, в том числе в 2-3 раза больше лизина и метионина, в 2-4 раза больше жира и тд. Обнаружены линии кукурузы, фиксирующие, благодаря присутствию на их корнях бактерий Spirillum lipoferum, атмосферный азот в таком же количестве, как и растения сои. Было установлено, что азотфиксирующие бактерии функционируют и на корнях целого ряда видов тропических трав, усваивая при этом азот не менее активно, чем бактерии рода Rhizobium у бобовых. Так, удалось обнаружить виды тропических трав, способные фиксировать до 1,7 кг азота в день на 1 га, т.е. 620 кг/год.

Во многих странах, в том числе европейских, картофель является основным источником витамина С, поскольку его потребляют в большом количестве. Известно, что производство картофеля в мире составляет около 300 млн. т.

В то же время из 154 известных видов картофеля повсеместное распространение получил лишь один — Solanum tuberosum. Очевидно, что в связи с возросшими возможностями селекции по увеличению потенциальной продуктивности растений, а также потребностями в повышении экологической устойчивости агроценозов и освоении малопригодных для растениеводства территорий масштабы деятельности человека по введению в культуру новых видов растений значительно увеличатся. В конечном счете, «бессознательный» (термин Дарвина) и сознательный отбор привели к тому, что адаптивный потенциал культурных растений существенно отличается от такового их диких предков не только в силу различий самих критериев адаптивности, но и по основным его компонентам: потенциальной продуктивности, устойчивости к абиотическим и биотическим стрессам, содержанию хозяйственно ценных веществ.

Наряду с сохранением растительного генофонда в заповедниках, заказниках и национальных экопарках, т.е. в условиях in situ, в предстоящий период все более важную роль будет играть создание «банков генов», или «банков зародышевой плазмы», обеспечивающих безопасное сохранение коллекций ex situ. Инициатором организации последних был Н.И. Вавилов, собравший в ВИРе самый большой в мире на то время банк растительных ресурсов, послуживший примером и основой для всех последующих банков, а самое главное — не раз спасавший ряд стран от опустошения и голода (например, благодаря наличию в генбанке ВИР генов устойчивости).

Благодаря продолжению идеологии Н.И. Вавилова, к концу 90-х годов национальные и международные коллекции растений насчитывали свыше 6 млн. образцов, в том числе более 1,2 млн. зерновых, 400 тыс. продовольственных бобовых, 215 тыс. кормовых, 140 тыс. овощных, свыше 70 тыс. корнеплодов. При этом 32% образцов сохраняется в Европе, 25% — в Азии, 12% — в Северной Америке, по 10% — в Латинской Америке и Международных центрах, 6% — в Африке, 5% — на Ближнем Востоке.

Держателями наиболее крупных по количеству и качеству образцов генетических коллекций являются США (550 тыс.), КНР (440 тыс.), Индия (345 тыс.) и Россия (320 тыс.). Наряду с сохранением растительных ресурсов в генбанках все большее распространение получает создание естественных заповедников флоры и фауны. Благодаря резко возросшей интеграции мирового рынка продовольствия, между странами значительно увеличился и обмен генетическими ресурсами растений. В основе этих процессов лежит понимание того, что ни одна страна или регион не являются самодостаточными в плане обеспечения генетическими ресурсами. Мобилизации генетических ресурсов во многом способствовали создание в ряде стран национальных ботанических садов. В их числе, например ботанический сад, созданный в Лондоне в 1760 г. и постоянно завозивший экзотические виды растений из колониальных стран.

В настоящее время координацию работ по сохранению растительного генофонда в мире осуществляет Международный совет по генетическим ресурсам растений (IBPGR). С 1980 г. реализуется Европейская программа сотрудничества в области генетических ресурсов. Важную роль в этом играют также Комиссия ФАО по генетическим ресурсам растений, решения международных конференций, принятая в 1992 г. Конвенция по биологическому разнообразию. При этом функционируют генные банки  разных типов. Некоторые из них поддерживают только одну культуру и ее диких сородичей, другие — несколько культур определенной почвенно-климатической зоны; если одни содержат базовые коллекции длительного хранения, то другие ориентированы на удовлетворение нужд селекцентров и научно-исследовательских учреждений. Так, в генном банке в Kew Gardens (Англия) хранятся исключительно дикорастущие растения (около 5000 видов).

Адаптивная стратегия интенсификации сельского хозяйства выдвигает качественно новые требования к мобилизации мировых растительных ресурсов в плане сбора, хранения и использования генофонда, в том числе введения в культуру новых видов растений. В настоящее время под угрозой полного уничтожения в мире находится свыше 25 тыс. видов высших растений, в том числе в Европе — каждый третий из 11,5 тыс. видов. Уже навсегда потеряны многие примитивные формы пшеницы, ячменя, ржи, чечевицы и других культур. Особенно быстро исчезают местные сорта и сорные виды. Так, если в Китае и Индии в начале 50-х гг. XX в. использовались тысячи сортов пшеницы, то уже в 70-е — лишь десятки. В то же время каждый вид, экотип, местный сорт — это уникальный, созданный в течение длительного естественного или искусственного отбора комплекс коадаптированных блоков генов, обеспечивающих, в конечном счете, наиболее эффективную утилизацию природных и антропогенных ресурсов в той или иной экологической нише.

Понимание ретроспективной природы эволюционной «памяти» высших растений со всей определенностью указывает на необходимость сохранения видового разнообразия флоры не только в генных банках и центрах генетических ресурсов, но и в естественных условиях, т.е. в состоянии постоянно эволюционирующей динамичной системы. Одновременно значительно большего внимания заслуживает создание генетических коллекций генетических систем преобразования генетической информации, включающих rес-системы, mei-мутанты, гаметоцидные гены, полиплоидные структуры, разные типы рекомбинационных систем, систем репродуктивной изоляции и др. Понятно, что именно они могут быть существенны для развития селекции будущего с использованием генно-инженерных технологий. Важно также выявлять и сохранять генетические детерминанты формирования устойчивых гомеостатических систем, синергетических, кумулятивных, компенсаторных и других ценотических реакций, обеспечивающих экологическую «буферность» и динамическое равновесие биоценотической среды. Большего внимания заслуживают и такие генетически детерминированные признаки растений, как конкурентоспособность, аллелопатические и симбиотические взаимодействия и другие средообразующие эффекты, реализуемые на биоценотическом уровне. Особое внимание должно быть уделено видам растений, обладающих конститутивной устойчивостью к экологическим стрессорам. Известно, что во второй половине XX в. в ряде стран значительно (порой в 60-80 раз) возросли площади под такого типа культурами.

В настоящее время в мире функционирует свыше 1460 национальных генных банков, в том числе около 300 крупных, в которых в условиях ex situ обеспечивается гарантированное хранение образцов культурных растений и их диких сородичей. Хранителями коллекций ex situ являются и ботанические сады, которых в мире насчитывается около 2 тыс. (около 80 тыс. видов растении, 4 млн. образцов и 600 банков семян). Их наличие — это признак национального суверенитета, уровня культуры, заботы о будущем страны и мира. К 2002 г. в международных центрах, находящиеся под контролем консультативной группы ФДО, сохранилось свыше 532 тыс. образцов растений, из которых 73% принадлежит к традиционным и староместным сортам, а также диким сородичам культурных растений. Как отмечает Длексанян (2003), следует различать понятия «генбанк» и «коллекции ex silu». Если первое — это гарантированное хранение генофонда в специально оборудованных помещениях, то «коллекции ех situ» включают образцы, которые представляют интерес для их держателей.

В начале 50-х гг. XX века был получен первый полукарликовый сорт риса за счет использования гена карликовости китайского сорта Fee-geo-woo, а сорт пшеницы Gaines на орошаемых землях тихоокеанского Северо-Запада США дал рекордный урожай — 141 ц/га. В 1966 г. был создан сорт IR 8, получивший прозвище «чудо-рис». При высокой агротехнике эти сорта давали 80 и даже 130 ц/га. Аналогичные результаты удалось получить и на просе. Если у старых сортов индекс урожая составлял 30-40%, то у новых — 50-60% и выше.

Дальнейшие возможности увеличения урожайности за счет роста индекса урожая ограничены. Поэтому значительно большее внимание должно быть уделено повышению величины чистого фотосинтеза. Необходима ориентация на широкую видовую и сортовую гетерогенность агроэкосистем и агроландшафтов в условиях полевого растениеводства, наряду с подбором страховых культур, а также культур и сортов-взаимострахователей, включает и дифференцированный подход к реализации адаптивного потенциала каждого из них. Высокая потенциальная продуктивность сорта и агроэкосистемы, достигаемая путем (а иногда и за счет) снижения их экологической устойчивости к лимитирующим величину и качество урожая факторам внешней среды, так же как и функционирование избыточно биоэнергозатратной экологической устойчивости, не могут рассматриваться в качестве адаптивных, поскольку для культивируемых растений основным показателем адаптивности в конечном счете является обеспечение высокой величины и качества урожая. Источником для научно обоснованной селекции по созданию необходимых сортов могут быть генофонды, накопленные в генбанках.

Следует подчеркнуть, что в мировых генбанках культурных растений собраны миллионы образцов, однако до сих пор только 1% из них исследован в отношении их потенциальных свойств (Жученко, 2004). В то же время ведущее значение для создания устойчивых агросистем имеет контроль и совершенствование их генетической компоненты — генофондов сельскохозяйственных видов, определяющее особенности локальных агросистем.