Недостатки традиционной селекции и современные пути их преодоления

We use cookies. Read the Privacy and Cookie Policy

Недостатки традиционной селекции и современные пути их преодоления

Обычно для получения новых сортов и пород животных используют гибридизацию и методы радиационного и химического мутагенеза. Среди проблем, ограничивающих возможности традиционной селекции, можно выделить следующие: желательные гены передаются вместе с нежелательными; приобретение одного желательного гена сопровождается часто потерей другого; некоторые гены остаются связанными друг с другом, что значительно затрудняет отделение положительных свойств от вредных.

Методы радиационного и химического мутагенеза, применяемые в ежедневной   практике   селекционера,   ведут  к  появлению огромного количества неизвестных генетических перестроек. Выведенное в результате таких воздействий растение в случае, если оно жизнеспособно и не имеет выраженных токсических свойств, может нести невыявленные мутации, поскольку мутантные сорта исследуются лишь с целью изучения характеристик, имеющих отношение к решению конкретной селекционной задачи.

Главные достоинства методов генетической инженерии заключаются в том, что они позволяют передавать один или несколько генов от одного организма другому без сложных скрещиваний, причем донор и реципиент не обязательно должны быть близкородственными. Это резко увеличивает разнообразие изменяемых свойств, ускоряет процесс получения организмов с заданными свойствами, а также, что очень важно, облегчает прослеживание генетических изменений и их последствий. А самое главное, измененный сорт или порода сразу адаптирован — вписан в конкретные условия окружающей среды.

Представить завтрашний день сельского хозяйства трудно, но с большой определенностью можно говорить о стратегических задачах, которые хотелось бы решить. Тут надо понимать, что цели природы и человека различны. Для людей, скажем, выгоднее получить пшеницу или ячмень с крупным зерном, с легкой обмолачиваемо с тью. Природе же важнее не размер, а количество зерен; а вот склонность к легкому обмолачиванию — этот признак может оказаться для растения даже вредным.

Такой разнобой во взглядах природы и человека, могущество которого все возрастает, не может не сказаться губительно на биосфере. Из огромного разнообразия растений, кормивших человека 10 тысяч лет назад, сегодня основу питания (85%) составляет всего пять видов растений. А из 5 тыс. окультуренных видов растений человек в настоящее время для удовлетворения 90% своих потребностей в продовольствии использует лишь 20, из которых 14 принадлежит всего лишь к двум семействам.

Чтобы понять, как далеко зашли эволюционные изменения под влиянием селекционной работы человека, достаточно взглянуть на кукурузные початки (их возраст — 5 тыс. лет), найденные при раскопках в пещере Теуакан (Мексика). Они примерно в 10 раз меньше, чем у современных сортов. И это реальный пример работы генетиков и селекционеров.

Г.Д. Карпеченко (1927) впервые синтезировал новую неизвестную в природе видовую форму Raphanobrassica (рафанобрассика), константный полиплоидный межродовой гибрид между редькой и капустой. Совершенно справедливо Н.Н. Воронцов (1999) называет синтез рафанобрассики первым случаем конструирования нового генома, того, что в конце 70-х стало называться генетической инженерией.

Через три года шведский генетик Арне Мюнтцинг впервые осуществил ресинтез дикорастущего в природе аллополиплоидного вида багульника.

Природная хромосомная инженерия создает гибридогенные полиплоидные комплексы видов, открытые и изученные американским ботаником Ледьярдом Стеббинсом. В этих комплексах геномы нескольких диплоидных исходных видов могут вступать между собой во всевозможные гибридные аллотетраплоидные комбинации. Объединяться могут сразу несколько геномов, так что предком одного вида может ни один, а несколько видов, как, например, у обычной мягкой пшеницы, у видов хлопчатника.

Гибридогенное видообразование встречается и у позвоночных и беспозвоночных животных. Но животные размножаются половым путем, который у межвидовых гибридов затруднен или даже невозможен. Поэтому межвидовые гибриды животных размножаются необычными способами, которые мы могли бы назвать репродуктивными технологиями. К ним относятся: партеногенез (спермии не нужны для развития яйцеклеток видов-гибридов); гиногенез (спермии нужны лишь для активации развития, но развитие происходит на основе женских гамет и наследование матроклинно); и собственно гибридогенез, когда гибридный вид образуется на основе гибридных оплодотворенных яйцеклеток, но один из родительских геномов избирательно устраняется.

Благодаря, в частности, селекционной работе, древнее природное разнообразие местных видов заменено ныне небольшим числом специально выведенных и почти насильно внедряемых сортов, выращиваемых на обширнейших пространствах. 96% урожая гороха в США получается всего-навсего от двух его разновидностей, а 71% урожая кукурузы — от шести ее сортов. Великолепные по продуктивности растения используют, но они, к сожалению, становятся все более подверженными различным заболеваниям, таким, к примеру, как картофельная гниль. Растения приходится усиленно «лечить» пестицидами и прочими опасными для окружающей среды и самого человека средствами. Одна из важнейших целей ДНК-технологии — не менять среду под растения, а наоборот — менять растение таким образом, чтобы оно было наиболее адаптивным к этой среде. Кроме того, необходим возврат растительного царства к многообразию, к неоглядному богатству видов. Очевидно, однако, что при этом главным остается обеспечение доступа к продовольствию всех социальных групп населения («здоровье нации»), поскольку на покупку продовольствия расходуется до 70% доходов населения

Селекционеры, наблюдая за работой биоинженеров, испытывают чувство зависти от простоты и ясности экспериментов. Хотя многие из них считают, что генетическая инженерия — это своего рода увлечение, мода, что она пройдет, и никакой особой пользы практика от нее не получат.

Медлительные, терпеливые, упорные, свято соблюдающие правила, издавна декретированные природой, деревенского, так сказать, склада селекционеры подозрительно относятся к поспешным, явно урбанистическим методам биоинженерии. Их раздражают рвение, спешка, рекламный шум, чрезмерные обещания, явное желание нарушить ритуалы, поскорее опрокинуть поставленные природой барьеры, обойти их, пролезть с «черного хода», зайти «вне очереди». Этот старый спор между сельской неторопливостью, основательностью и городской суетой и необязательностью, видимо, разрешится не скоро, потому что биоинженер, в конечном итоге, передает свои находки селекционерам, именно они должны судить, удался или нет очередной генный «фокус».

Каких бы чудес ни напридумывали молекулярные биологи, рассуждают селекционеры, нам решать, что у них получилось. Потому-то скоростные методы переделки сельского хозяйства — это миф. Для получения у данного растения нужных признаков требуется от пяти до пятнадцати лет. А потом еще, по крайней мере, от трех до восьми лет работы традиционными методами, чтобы закрепить эти признаки у растения, а потом его районирование и тд. Но следует признать, что биоинженерия в отличие от традиционных методов селекции обладает наибольшей возможностью технологизировать достижения фундаментальных знаний, и, в частности, молекулярной биологии. Кроме того, методы биотехнологии являются качественно новым инструментом для непосредственного изучения структурно-функциональной организации генетического материала. А это, в свою очередь, позволяет предположить, что генетическая инженерия растений окажет наибольшее влияние при селекции на такие адаптивно и хозяйственно ценные признаки, как интенсивность чистого фотосинтеза, индекс урожая и др. Наиболее перспективные направления в области защиты растений включают получение трансгенных сортов, устойчивых к гербицидам и вредным видам, биопестицидов, новых форм микроорганизмов и др. Очевидно также, что сама генетическая инженерия, став экспериментальным полигоном эволюции, будет непрерывно совершенствоваться и усложняться, расширяя возможности человека в целенаправленном преобразовании организмов, и вполне вероятно, что дальнейшее развитие методов молекулярной биологии, в том числе трансгеноза, позволит поднять современную селекцию растений на качественно новый уровень.

Хотя для генетической инженерии существует масса трудностей, например, в том, что селекция новых сортов затрагивает свойства растения, контролируемые не одним, а сразу многими генами. Например, ученые хотят сконструировать растения, способные сами себя «удобрять».

 Настойчиво пропагандируется мысль передать зерновым культурам — основной пище человечества — группы генов nrf из бактерий, умеющих улавливать атмосферный азот, и тем самым избавиться от необходимости вносить в почву азотные удобрения. И это будет. Но когда — пока неизвестно, потому что переносить необходимо целый комплекс по крайней мере из 17 генов. И если будет все удачно, заставить работать все эти гены (например, в геноме пшеницы), то, по оценкам специалистов, такие растения снизят урожайность на 20-30 процентов сухого веса из-за необходимости нести дополнительные энергозатраты на фиксацию азота...

Проблема производства и потребления генетически модифицированных растительных продуктов становится все более острой. Сторонники широкого употребления в пищу подобного рода изделий говорят, что они совершенно безопасны для человеческого организма, а преимущества их огромны — большие урожаи, повышенная устойчивость к переменам погоды и вредителям, лучшая сохранность. В то же время, в геноме растений есть дальние связи между генами, и вмешиваться в работу генной машины следует очень осторожно. Можно ненароком перевести генные механизмы растения из одного режима в другой, вовсе нежелательный для человека.

Хотя и в традиционной селекции масса таких примеров, не говоря уже о том, сколько селекционеров вообще ничего не получили. Известна, например, история с геном opaque 2. Этот ген захотели использовать в США (университет Пардью) для обогащения зерен кукурузы аминокислотой лизином, что резко бы повысило питательную ценность кукурузного зерна.

Перенос гена удался, радость была великая, но... урожайность у трансформированных сортов упала на 15 процентов, а сами зерна стали хрупкими и чувствительными к возбудителям болезней. Конечно же, очень жаль, что и вооруженная генно-инженерными методиками селекция не может одномоментно решить все проблемы, однако она гарантирует хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.