Первые продукты из ГМО — антибиотики

Первые продукты из ГМО — антибиотики

К антибиотикам относятся низкомолекулярные вещества, различающиеся по химической структуре. Общее для этих соединений то, что, являясь продуктами жизнедеятельности микроорганизмов, они в ничтожных концентрациях специфически нарушают рост других микроорганизмов.

Большинство антибиотиков относится к вторичным метаболитам. Их, как и токсины и алкалоиды, нельзя отнести к строго необходимым для обеспечения роста и развития микроорганизмов веществам. По этому признаку вторичные метаболиты отличаются от первичных, в присутствии которых наступает гибель микроорганизма.

Биосинтез антибиотиков, как и других вторичных метаболитов, как правило, происходит в клетках, прекративших рост (идиофаза). Биологическая роль их в обеспечении жизнедеятельности клеток-продуцентов остается до конца не исследованной. Специалисты, изучающие перспективы биотехнологии в области микробиологического производства антибиотиков, считают, что они в неблагоприятных условиях подавляют рост конкурирующих микроорганизмов, обеспечивая тем самым более благоприятные условия для выживания микроба-продуцента того или иного антибиотика. Значение процесса антибиотикообразования в жизнедеятельности микробной клетки подтверждается тем, что у стрептомицетов около 1% геномной ДНК приходится на долю генов, кодирующих ферменты биосинтеза антибиотиков, которые в течение продолжительного времени могут не экспрессироваться. Продуцентами известных антибиотиков в основном являются шесть родов нитчатых грибов, три рода актиномицетов (почти 4000 различных антибиотиков) и два рода истинных бактерий (примерно 500 антибиотиков). Из нитчатых грибов особое внимание следует обратить на плесневые грибы родов Cephalosporium и Penicillium, являющиеся продуцентами так называемых бета-лактамных антибиотиков — пенициллинов и цефалоспоринов. Большая часть актиномицетов, синтезирующих антибиотические вещества, включая тетрациклины, относится к роду Streptomyces.

Из известных 5000-6000 природных антибиотических веществ для реализации потребителям производится только около 1000. В то время, когда установили антибактериальное действие пенициллина и возможность его использования в качестве лекарственного препарата (Х.У. Флори, Э.Б. Чейн и др., 1941), продуктивность лабораторного штамма плесени — 2 мг препарата на 1 л культуральной жидкости — была явно недостаточной для промышленного производства антибиотика. Многократными систематическими воздействиями на исходный штамм Penicillium chrisogenum такими мутагенами, как рентгеновское и ультрафиолетовое облучение, азотистый иприт в сочетании со спонтанными мутациями и отбором наилучших продуцентов, удалось увеличить продуктивность гриба в 10 000 раз и довести концентрацию пенициллина в культуральной жидкости до 2%.

Путь повышения эффективности штаммов-продуцентов антибиотиков, основанный на беспорядочных мутациях и ставших классическим, несмотря на колоссальные затраты труда, используется до настоящего времени. Создавшееся положение является следствием того, что антибиотик, в отличие от белка, не является продуктом конкретного гена; биосинтез антибиотика происходит в результате совместного действия 10-30 разных ферментов, кодируемых соответствующим количеством разных генов. Кроме того, для многих антибиотиков, микробиологическое производство которых налажено, молекулярные механизмы их биосинтеза до сих пор не изучены. Полигенный механизм, лежащий в основе биосинтеза антибиотиков, является причиной того, что изменения отдельных генов не приводят к успеху. Автоматизация рутинных приемов анализа продуктивности мутантов позволяет изучить десятки тысяч функционирующих штаммов и тем самым ускоряет процедуру отбора при использовании классического генетического приема.

Новая биотехнология, основанная на использовании штаммов-суперпродуцентов антибиотиков, предполагает совершенствование механизмов защиты продуцента от синтезируемого им антибиотика.

Высокую продуктивность проявляют штаммы, устойчивые к действию высоких концентраций антибиотиков в культурной среде. Это свойство также учитывается при конструировании клеток-суперпродуцентов. Со времени открытия пенициллина в конце 1920-х годов из различных микроорганизмов были выделены более 6000 антибиотиков, обладающих разной специфичностью и разным механизмом действия. Их широкое применение для лечения инфекционных заболеваний помогло сохранить миллионы жизней. Подавляющее большинство основных антибиотиков было выделено из грамположительной почвенной бактерии Streptomyces, хотя их продуцируют также грибы и другие грамположительные и грамотрицательные бактерии. Ежегодно во всем мире производится 100 000 т антибиотиков на сумму примерно S млрд. долларов, в том числе более 100 млн. долларов приходится на долю антибиотиков, добавляемых в корм скоту в качестве добавок или ускорителей роста.

По оценкам, каждый год ученые обнаруживают от 100 до 200 новых антибиотиков, прежде всего в рамках обширных исследовательских программ по поиску среди тысяч различных микроорганизмов таких, которые синтезировали бы уникальные антибиотики. Получение и клинические испытания новых препаратов обходятся очень дорого, и в продажу поступают только те из них, которые имеют большую терапевтическую ценность и представляют экономический интерес. На их долю приходится 1-2% всех обнаруживаемых антибиотиков. Большой эффект здесь дает технология рекомбинантных ДНК. Во-первых, с ее помощью можно создавать новые антибиотики с уникальной структурой, оказывающие более мощное воздействие на определенные микроорганизмы и обладающие минимальными побочными эффектами. Во-вторых, генноинженерные подходы могут использоваться для увеличения выхода антибиотиков и соответственно для снижения стоимости их производства.

Можно считать, что клиническая биотехнология зародилась с началом промышленного производства пенициллина в 40-х гг. и его использования в терапии. По-видимому, применение этого первого природного пенициллина повлияло на снижение заболеваемости и смертности больше, чем какого-либо другого препарата, но, с другой стороны, поставило ряд новых проблем, которые удалось решить опять-таки с помощью биотехнологии.

Во-первых, успешное применение пенициллина вызвало большую потребность в этом лекарственном препарате, и для ее удовлетворения нужно было резко повысить выход пенициллина при его производстве. Во-вторых, первый пенициллин — С(бензилпенициллин) — действовал главным образом на грамположительные бактерии (например, Streptococci и Staphylococci), а нужно было получить антибиотики с более широким спектром действия и/или активностью, поражающие и грамотрицательные бактерии типа E.coli и Pseudomonas. В-третьих, поскольку антибиотики вызывали аллергические реакции (чаще всего незначительные, вроде сыпи на коже, но иногда и тяжелее, угрожающие жизни проявления анафилаксии), необходимо было иметь целый набор антибактериальных средств, с тем чтобы можно было выбрать из равноэффективных препаратов такой, который не вызывал бы у больного аллергию. В- четвертых, пенициллин нестабилен в кислой среде желудка, и его нельзя назначать для приема внутрь. Наконец, многие бактерии приобретают устойчивость к антибиотикам. Классический пример тому — образование стафилококками фермента пенициллиназы (правильнее, бета-лактамазы), который гидролизует амидную связь в бета-лактамном кольце пенициллина с образованием фармакологически неактивной пенициллоиновой кислоты. Увеличить выход пенициллина при его производстве удалось в основном благодаря последовательному использованию серии мутантов исходного штамма Penicillium chrysogenum, а также путем изменения условий выращивания.

Процесс биосинтеза одного антибиотика может состоять из десятков ферментативных реакций, так что клонирование всех генов его биосинтеза — задача не из легких. Один из подходов к выделению полного набора таких генов основан на трансформации одного или нескольких мутантных штаммов, не способных синтезировать данный антибиотик, банком клонов, созданным из хромосомной ДНК штамма дикого типа. После введения банка клонов в мутантные клетки проводят отбор транс формантов, способных синтезировать антибиотик. Затем выделяют плазмидную ДНК клона, содержащего функциональный экс премирующийся ген антибиотика (т.е. ген, восстанавливающий утраченную мутантным штаммом функцию), и используют ее в качестве зонда для скрининга другого банка клонов хромосомной ДНК штамма дикого типа, из которого отбирают клоны, содержащие нуклеотидные последовательности, которые перекрываются с последовательностью зонда. Таким образом идентифицируют, а затем клонируют элементы ДНК, примыкающие к комплементирующей последовательности, и воссоздают полный кластер генов биосинтеза антибиотика. Описанная процедура относится к случаю, когда эти гены сгруппированы в одном сайте хромосомной ДНК. Если же гены биосинтеза разбросаны в виде небольших кластеров по разным сайтам, то нужно иметь, по крайней мере, по одному мутанту на кластер, чтобы получить клоны ДНК, с помощью которых можно идентифицировать остальные гены кластеров.

С помощью генетических или биохимических экспериментов можно идентифицировать, а затем выделить один или несколько ключевых ферментов биосинтеза, определить их N-концевые аминокислотные последовательности и, исходя из этих данных, синтезировать олигонуклеотидные зонды. Этот подход использовался для выделения из Penicillium chrysogenum гена синтетазы изопенициллина N. Этот фермент катализирует окислительную конденсацию 5-(1_-а-аминоадипилН— цистеинил-Р-валина в изопенициллин N, ключевое промежуточное звено в биосинтезе пенициллинов, цефалоспоринов и цефамицинов.

Новые антибиотики с уникальными свойствами и специфичностью можно получить, проводя генно-инженерные манипуляции с генами, участвующими в биосинтезе уже известных антибиотиков. Один из первых экспериментов, в ходе которого был получен новый антибиотик, состоял в объединении в одном микроорганизме двух немного различающихся путей биосинтеза антибиотика.

Одна из плазмид Streptomyces, plJ2303, несущая фрагмент хромосомной ДНК S.coelicoior длиной 32,5 т.п.н., содержит все гены ферментов, ответственных за биосинтез из ацетата антибиотика актинородина, представителя семейства изохроманхиноновых антибиотиков. Целую плазмиду и различные субклоны, несущие части 32,5 т.п.н.-фрагмента (например, plJ2315), вводили либо в штамм АМ-7161 Streptomyces sp.T синтезирующий родственный антибиотик медермицин, либо в штамм В1140 или Tu22 S.violaceoruber, синтезирующие родственные антибиотики гранатицин и дигидрогранатицин.

Все указанные антибиотики являются кислотно-щелочными индикаторами, которые придают растущей культуре характерный цвет, зависящий от рН среды. В свою очередь рН (и цвет) среды зависят от того, какое соединение синтезируется. Мутанты родительского штамма S.coelicoior, не способные синтезировать актино родин, бесцветные. Появление окраски после трансформации штамма АМ-7161 Streptomyces sp. либо штаммов B1J40 или Tu22 S.violaceoruber плазмидой, несущей все или несколько генов, кодирующих ферменты биосинтеза актинородина, свидетельствует о синтезе нового антибиотика Трансформанты штамма АМ-7161 Streptomyces sp. и штамма-6 1140 S.violaceoruber, содержащие плазмиду рМ2303, синтезируют антибиотики, кодируемые и плазмидой, и хромосомной ДНК.

Однако при трансформации штамма Tu22 S.violaceoruber плазмидой plJ2303 наряду с актинородином синтезируется новый антибиотик — дигидрогранатиродин, а при трансформации штамма АМ-7161 Streptomyces sp. плазмидой plJ2315 синтезируется еще один новый антибиотик — медерродин А.

В структурном отношении эти новые антибиотики мало отличаются от актинородина, медермицина, гранатицина и гидрогранатицина и, вероятно, образуются в том случае, когда промежуточный продукт одного пути биосинтеза служит субстратом для фермента другого пути. Когда будут детально изучены биохимические свойства различных путей биосинтеза антибиотиков, появится возможность создавать новые уникальные высокоспецифичные антибиотики, манипулируя генами, которые кодируют соответствующие ферменты.

Разработка новых методов получения современных поликетидных антибиотиков.

Термин «поликетидные» относится к классу антибиотиков, которые образуются в результате последовательной ферментативной конденсации карбоновых кислот типа ацетата, пропионата и бутирата. Некоторые поликетидные антибиотики синтезируются растениями и грибами, но большая их часть образуется актиномицетами в виде вторичных метаболитов. Прежде чем проводить манипуляции с генами, кодирующими ферменты биосинтеза поликетидных антибиотиков, необходимо было выяснить механизм действия этих ферментов.

Детально изучив генетические и биохимические составляющие биосинтеза эритромицина в клетках Saccharopolyspora erythraea, удалось внести специфические изменения в гены, ассоциированные с биосинтезом этого антибиотика, и синтезировать производные эритромицина с другими свойствами. Вначале была определена первичная структура фрагмента ДНК S.erythraea длинен! 56 т.п.н., содержащего кластер генов егу, затем двумя разными способами модифицирована эритромицинполикетидсинтаза. Для этого 1) удаляли участок ДНК, кодирующий бета-кеторедуктазу, либо 2) вносили изменение в участок ДНК, кодирующий еноилредуктазу. Эти эксперименты позволили экспериментально показать, что если идентифицировать и охарактеризовать кластер генов, кодирующих ферменты биосинтеза определенного поликетидного антибиотика, то, внося в них специфические изменения, можно будет направленно изменять структуру антибиотика.

Кроме того, вырезая и соединяя те или иные участки ДНК, можно перемещать домены поликетидсинтазы и получать новые поликетидные антибиотики.

ДНК-технология в усовершенствование производства антибиотиков

С помощью генной инженерии можно не только создавать новые антибиотики, но и увеличивать эффективность синтеза уже известных. Лимитирующим фактором в промышленном производстве антибиотиков с помощью Streptomyces spp. часто является количество доступного клеткам кислорода. Вследствие плохой растворимости кислорода в воде и высокой плотности культуры Streptomyces его часто оказывается недостаточно, рост клеток замедляется, и выход антибиотика снижается. Чтобы решить эту проблему, можно, во-первых, изменить конструкцию биореакторов, в которых выращивается культура Streptomyces, а во-вторых, используя методы генной инженерии, создать штаммы Streptomyces, более эффективно использующие имеющийся кислород. Эти два подхода не исключают друг друга.

Одна из стратегий, используемых некоторыми аэробными микроорганизмами для выживания в условиях недостатка кислорода, состоит в синтезе гемоглобинподобного продукта, способного аккумулировать кислород и доставлять его в клетки. Например, аэробная бактерия Vitreoscilla sp. синтезирует гомодимерный гемсодержащий белок, функционально подобный эукариотическому гемоглобину. Ген «гемоглобина» Vitreoscilla был выделен, встроен в плазмидный вектор Streptomyces и введен в клетки этого микроорганизма. После его экспрессии на долю гемоглобина Vitreoscilla приходилось примерно 0,1% всех клеточных белков S.coelicoior даже в том случае, когда экспрессия осуществлялась под контролем собственного промотора гена гемоглобина Vitreoscilla, а не промотора Streptomyces. Трансформированные клетки S.coelicoior, растущие при низком содержании растворенного кислорода (примерно 5% от насыщающей концентрации), синтезировали в 10 раз больше актинородина на 1 г сухой клеточной массы и имели большую скорость роста, чем нетранс формированные. Этот подход можно использовать и для обеспечения кислородом других микроорганизмов, растущих в условиях недостатка кислорода.

Исходным материалом при химическом синтезе некоторых цефалоспоринов — антибиотиков, обладающих незначительным побочным эффектом и активных в отношении множества бактерий, — является 7-аминоцефалоспорановая кислота (7АСА), которая в свою очередь синтезируется из антибиотика цефалоспорина С. К сожалению, природных микроорганизмов, способных синтезировать 7АСА, до сих пор не выявлено.

Новый   путь   биосинтеза   7АСА   был   сконструирован включением специфических генов в плазмиду гриба Acremonium chrysogenum, который обычно синтезирует только цефалоспорин-С. Один из этих генов был представлен кДНК гриба Fusarium solani, кодирующей оксидазу D-аминокислот, а другой происходил из геномной ДНК Pseudomonas diminuta и кодировал цефалоспоринацилазу. В плазмиде гены находились под контролем промотора A.chrysogenum. На первом этапе нового биосинтетического пути цефалоспорин-С превращается в 7-р-(5-карбокси-5-оксопентанамид) цефалоспорановую кислоту (кето-АО-7АСА) при помощи оксидазы аминокислот. Часть этого продукта, вступая в реакцию с пероксидом водорода, одним из побочных продуктов, превращается в 7-бета-(4-карбоксибутанамид)-цефалоспорановую кислоту (GL-7ACA). И цефалоспорин-С, и кето-А0-7АСА, и GL-7ACA могут подвергаться гидролизу цефалоспоринацилазой с образованием 7АСА, однако только 5% цефалоспорина-С напрямую гидролизуется до 7АСА. Следовательно, для образования 7АСА с высоким выходом необходимы оба фермента.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

3. Продукты поведения

Из книги Генетически и культурно обусловленные стереотипы поведения автора Плюснин Ю М

3. Продукты поведения Посмотрим на проблему детерминации поведения под другим углом зрения. Как известно, в теории «трех миров» К. Поппер постулирует три реально существующих мира: помимо мира физической реальности и ментального мира существует и мир объективного


ЛЕКЦИЯ № 8. Антибиотики и химиотерапия

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 8. Антибиотики и химиотерапия 1. Химиотерапевтические препараты Химиотерапевтические препараты – это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным,


Антибиотики

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Антибиотики Антибиотики действуют во взаимосвязи с энзимными системами микроорганизмов. Это научное объяснение их методов воздействия. Больше всего беспокоит то, что изготовители их и те, кто их применяет на больных, совершенно незнакомы с энзимными системами, на


Азбука здоровья — здоровые продукты

Из книги Великие открытия автора Аугуста Иозеф

Азбука здоровья — здоровые продукты Достижения научно-технического прогресса затронуло все сферы человеческой деятельности, начиная от производства и кончая повседневным бытом. Столетиями люди стремились освободиться от физических нагрузок, автоматизируя


Надо ли маркировать продукты, полученные из ГМО?

Из книги Путешествие в страну микробов автора Бетина Владимир

Надо ли маркировать продукты, полученные из ГМО? «Изготовитель обязан своевременно предоставить потребителю необходимую и достоверную информацию о товарах, обеспечивающую возможность их правильного выбора» (из закона «О защите прав потребителей»).Как отмечено выше,


Первые погребения

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Первые погребения На стоянке под нависшей скалой собралось все племя неандертальцев. У костра лежит истекающий кровью юноша. Лицо его мертвенно бледно, глубоко запавшие глаза закрыты, сжатые губы посинели. Над ним стоит другой молодой охотник и взволнованно объясняет


Опасные пищевые продукты

Из книги Голосеменные растения автора Сивоглазов Владислав Иванович

Опасные пищевые продукты Продукты питания часто бывают местом размножения микробов, вырабатывающих токсины. Clostridium botulinum облюбовал мясную пищу и выделяет в нее ботулинический токсин, один из наиболее сильнодействующих ядов. Если человек съест колбасу, ветчину или


Каким образом антибиотики уничтожают микробы

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Каким образом антибиотики уничтожают микробы Век антибиотиков поставил перед микробиологами целый ряд вопросов. Рассмотрим один из них. Каким образом антибиотик убивает чувствительные к нему микробы? Уже Эрлих показал, что существует тесная связь между химической


Антибиотики в борьбе с голодом

Из книги Yerba Mate: Мате. Матэ. Мати. 9000 лет парагвайского чая автора Колина Аугусто

Антибиотики в борьбе с голодом Антибиотики являются одним из важных средств для создания пищевых запасов. Некоторые из них оказывают важные услуги в борьбе с микробами — вредителями растений. В животноводстве они служат лечебными средствами при инфекционных болезнях


Как европейцы воспринимают продукты, имеющие отношение к генной инженерии?

Из книги автора

Как европейцы воспринимают продукты, имеющие отношение к генной инженерии? В 2001 году в странах Европы провели опрос населения об отношении к продуктам, полученным от измененных с помощью генной инженерии животных и растений. Оказалось, что наиболее благожелательны к


Почему жареные, копченые и запеченные рыбные и мясные продукты нужно есть с большим количеством специй и зелени?

Из книги автора

Почему жареные, копченые и запеченные рыбные и мясные продукты нужно есть с большим количеством специй и зелени? При указанных способах приготовления рыбных и мясных продуктах в них образуются мутагены – химические соединения, потребление которых человеком приводит к


Продукты хвойных растений

Из книги автора

Продукты хвойных растений Живица — ценнейший продукт хвойных растений Воздух хвойных лесов всегда насыщен стойким смолистым запахом. Его создают эфирные масла, в которых растворяется смола. Масла со смолой заполняют смоляные ходы древесины хвойных. Раствор смолы в


Первые европейцы

Из книги автора

Первые европейцы В раннем палеолите[36] Европа никак не могла претендовать на статус центра цивилизации. Она была скорее задворками Ойкумены, «медвежьим углом». Но все же и сюда добирались отголоски прогресса, ковавшегося в те времена в основном в Африке.Древнейшим


Коммерческие продукты на основе мате

Из книги автора

Коммерческие продукты на основе мате Понятно, что мате – это полезный продукт, именно поэтому сейчас на рынке представлены капсулы, содержащие мате, а также различные молочные смеси с йербой, разработанные для снижения веса. На просторах России такого изобилия пока что