ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы)

We use cookies. Read the Privacy and Cookie Policy

ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы)

Основной закон рационального питания диктует необходимость соответствия уровней поступления и расхода энергии. Уменьшение энерготрат современного человека ведет к снижению объема потребляемой пищи. Рацион современного человека, достаточный по калорийности, не в состоянии покрыть потребность организма в витаминах и ряда других веществ. Например, качество и полезность растительных жиров зависит от сравнительного содержания пальмитиновой, стеариновой, олеиновой, линолевой и линоленовой кислот. Жиры, богатые олеиновой кислотой, стабильны к окислению, имеют лучший запах и более полезны для здоровья, тогда как жиры, богатые ненасыщенными жирными кислотами (линолевой и линоленовой), имеют менее качественные органолептические характеристики и менее стабильны. Большинство растительных жиров имеют более 50% ненасыщенных жирных кислот. Поэтому в последние годы начаты работы по получению трансгенных масличных растений с измененным содержанием жирных кислот.

Трансгенные растения сои, несущие ген, кодирующий антисмысловую омега-3-десатуразу (катализирующую синтез линоленовой кислоты из линолевой), характеризовались пониженным содержанием линоленовой кислоты. Трансгенные соя и рапс с геном омега-6-десэтуразы имеют сниженное содержание линолевой и повышенное содержание олеиновой кислот. Один из лидеров этого направления — компания «Calgene». В 1995 г. эта компания получила разрешение в США на выращивание и коммерческое использование трансгенных растений рапса с измененным жирнокислотным составом. Проводятся также исследования по созданию трансгенных растений с заданным аминокислотным составом. Так, в настоящее время, клонированы гены запасных белков сои, горохэ, фасоли, кукурузы, картофеля.

Человек и млекопитающие требуют наличия 8 незаменимых аминокислот в рационе. Однако ни один из широко используемых в пищу белков семян не содержит сбалансированного набора всех этих аминокислот. Белки семян злаков дефицитны по лизину и триптофану, тогда как в белках бобовых — дефицит серосодержащих аминокислот метионина и цистеина. Методами генетической инженерии возможно введение кодонов, кодирующих дефицитные незаменимые аминокислоты, а также другие гены, модифицирующие содержание дефицитных аминокислот.

Регулируя биосинтез аминокислот, можно изменять их содержание в белках. В растения турецкого гороха был введен ген треониндеаминазы (TD). Анализ свободных аминокислот показал повышение в несколько раз содержания треонина, метионина и лизина.

Содержание лизина и метионина у сои и кукурузы повышали путем введения генов новых запасных белков или модификацией генов, контролирующих основные этапы биосинтеза запасных белков.

При трансформации рапса генетической конструкцией, содержащей антисмысловой ген круциферина, у полученных трансгенных растений наблюдали повышение содержания лизина, метионина и цистеина.

До 80% фосфора в зерне злаков находится в форме фитиновой кислоты (фитата), которая откладывается при развитии зерна в виде фитина. При прорастании фитат освобождается под действием энзима фитазы. Однако в сухих семенах, используемых при питании человека или при скармливании не жвачным животным, происходит незначительная деградация фитина.

Для улучшения питательной ценности зерна пшеницы, кодирующий фитазу ген (phyA) Aspergillus niger был перенесен в пшеницу при микробомбардировке незрелых зародышей. Для направления транспорта чужеродного протеина в полость эндоплазматического ретикулума к 5-концу гена phyA была пришита последовательность из 72 пар оснований, кодирующая сигнальную последовательность амилазы ячменя. Используя селекцию по bar гену, который находился под промотором убиквитина кукурузы, были получены трансгенные линии пшеницы.

Наиболее простой и очевидной стратегией в улучшении качества белка пшеницы и других злаков является увеличение числа генов, кодирующих высокомолекулярные субъединицы запасных белков. Это должно привести к увеличению пропорции высокомолекулярных субъединиц белка, что, в свою очередь, должно привести к увеличению эластичности хлеба. Это направление в настоящее время разрабатывается в нескольких лабораториях, имеющих подобные гены под контролем эндосперм-специфических промоторов.

Ведутся работы по изменению содержания углеводов. Первая работа по получению трансгенных растений с измененным содержанием углеводов была опубликована в 1992 г., когда в клубнях трансгенного картофеля было повышено содержание крахмала путем суперэкспрессии gig С гена Escherichia coli.

Фруктаны — полимеры фруктозы — являются низкокалорийными осластителями, которые имеют примерно такую же сладость, как и сахар, но не усваиваются человеком. Фруктаны стимулируют рост полезной микрофлоры кишечника. Они рекомендуются больным, страдающим инсулинозависимым диабетом и ожирением, и могут играть роль в снижении содержания холестерина в крови.

Некоторые фруктаны, такие как инулин, находят в тканях растений, например, цикория. Однако низкое содержание этих полимеров и сложности с выделением сильно снижают их коммерческое использование.

Получаемые промышленным способом в биореакторах из Aspergillus фруктаны имеют высокую стоимость.

Имеются сообщения о получении фруктан-синтезирующих трансгенных растениях табака и картофеля. Получены и трансгенные растения сахарной свеклы с геном 1-sst из артишока, кодирующим синтез 1-сахарозо-сахарозофруктозилтрансферазы — фермента, превращающего сахарозу в низкомолекулярные фруктаны. Ген был введен в протопласты замыкающих клеток устьиц. Запасающие корни полученных трансгенных растений имели высокое содержание низкомолекулярных фруктанов при общем содержании сахаров и сухом весе корней на уровне контрольных растений. Экспрессия 1-sst гена привела к превращению более 90% запасенных сахаров в фруктан.

Так как наличие фруктанов у растений коррелирует с холодо- и засухоустойчивостью, то можно предполагать усиление этих признаков у полученных трансгенных растений сахарной свеклы.

Инвертаза расщепляет сахарозу до моносахаров. Трансгенные растения томата с геном кислой инвертазы в антисмысловой ориентации имели повышенное содержание сахарозы и пониженное содержание гексоз. При этом плоды, накапливающие сахарозу, были примерно на 30% мельче контрольных.

Глюкоза и фруктоза — одни из основных продуктов метаболизма растений, регулирующие многие биологические процессы. Первым этапом в их метаболизме является фосфорилирование гексокиназами и фруктокиназами. Изучение трансгенных растений томата с измененной активностью фосфорилирования гексоз показало, что фосфорилирующие энзимы влияют на регуляторную функцию сахаров.

Изучается возможность получения трансгенных растений, синтезирующих антигельминтные протеины, для терапии инфицированных гельминтами животных.

В самое последнее время трансгенные растения рассматриваются в качестве альтернативы микробиологическому синтезу. Они, имея низкую себестоимость, могут использоваться в производстве больших количеств антител и других белков и полипептидов. Выход антител в трансгенных растениях составляет от 1 до 5% от общего содержания белка растений.

Было подсчитано, что стоимость 1 кг протеина при 1% содержании от общего белка будет составлять приблизительно 100 долл. По подсчетам фирмы Agracetus, если средняя стоимость очищенных пептидов, полученных с помощью современных методов, составляет 100 000-1 млн долл/кг, то их стоимость при получении из трансгенных растений составит 1000 долл/кг.

Безусловно, в настоящее время трудно сказать, какие антигены, какие «съедобные вакцины» и на основе каких растений будут получены и коммерциализованы в ближайшее время. Ясно только, что экономические выгоды от применения таких вакцин намного превысят расходы на их разработку и внедрение в промышленные условия.

Трансгеноз все более широко используется для получения различных соединений, имеющих самое разнообразное практическое применение.

Описано изменение аромата, наблюдаемое у трансгенных растений.

Известно, что несколько биотехнологических компаний работают над изменением окраски цветков трансгенных растений, в частности, над получением голубой розы. Первым примером изменения окраски цветков растений, очевидно, является эксперимент по введению гена, кодирующего дигидрофлавонолредуктазу в белоцветковое растение петунии, что привело к появлению кирпично-красной окраски.

Осуществлена генетическая трансформация торении (Torenia hybrida). Полученные трансгенные растения не содержали вовсе или имели сниженное количество антоцианов в лепестках цветков. Их окраска варьировала у разных трансгенных растении от синей до белой.

Трансформация другого сорта торении, содержащего в цветках антоцианы и каротиноиды, этими же генетическими конструкциями, привела к получению растений с бледно-желтой окраской.

В последнее время, наряду с переносом в растения таких «экзотических генов», разрабатываются уже целые программы по отдельным видам сельскохозяйственных растений, направленные на изменение сразу целого комплекса полезных признаков. Так, для сахарной свеклы такая программа ставит целью изменения морфологии корня путем введения генов, изменяющих уровень эндогенных фитогормонов, и прямые манипуляции с cdc (циклин-зависимые киназы) генами для получения высокоурожайной сахарной свеклы, с высоким содержанием сахарозы, незагрязненным клеточным соком и слабой зависимостью от условий выращивания.