5.4. МИКРОУДОБРЕНИЯ

Микроэлементы — это необходимые элементы питания, находящиеся в растениях в тысячных-стотысячных долях процента и выполняющие важные функции в процессах жизнедеятельности.

Разработка теоретических основ применения микроэлементов в земледелии стала осуществляться более успешно после того, как была частично расшифрована физиологическая роль микроэлементов в жизни растений. В решение теоретических и практических вопросов, связанных с питанием растений микроэлементами, большой вклад внесли Я. В. Пейве, М. В. Каталымов, П. А. Власюк, Р. К. Кедров-Зихман, М. Я. Школьник и другие ученые.

Недостаток микроэлементов вызывает ряд болезней растений и нередко приводит к их гибели. Применение соответствующих микроудобрений не только устраняет возможность болезней, но и обеспечивает получение более высокого урожая лучшего качества.

Положительное действие микроэлементов обусловлено тем, что они принимают участие в окислительно-восстановительных процессах, углеводном и азотном обмене, повышают устойчивость растений к болезням и неблагоприятным условиям внешней среды. Под влиянием микроэлементов в листьях увеличивается содержание хлорофилла, улучшается фотосинтез, усиливается ассимилирующая деятельность всего растения. Многие микроэлементы входят в активные центры ферментов и витаминов.

Микроэлементы способны образовывать комплексы с нуклеиновыми кислотами, влиять на физические свойства, структуру и физиологические функции рибосом. Они влияют на проницаемость клеточных мембран и поступление элементов питания в растения.

Марганец способствует избирательному поглощению ионов из внешней среды; при его исключении содержание ряда микроэлементов повышается. Марганец влияет на передвижение фосфора из стареющих листьев к молодым. Кобальт, по-видимому, участвует в изменении проницаемости плазмалеммы, значительно улучшает поступление в растения азота и других элементов. Молибден улучшает поглощение растениями фосфора за счет участия в метаболизме азота и может значительно увеличивать обеспеченность растений данным элементом. Поступление азота улучшается также при применении меди и бора. Цинк изменяет проницаемость мембран для калия и магния. У цинкодефицитных растений отмечается повышенная концентрация неорганического фосфора. Этот элемент участвует в структурной организации клеток и в регуляции транспорта ионов через клеточные мембраны. Медь влияет на работу К—Na—АТФ-азы, способствует накоплению в растениях органических соединений фосфора. При достаточном обеспечении медью, цинком и бором поступление магния в растения улучшается.

Взаимодействие между различными ионами может проявляться по-разному и зависит от их количественного состава и факторов внешней среды. По нашим данным, при нарушении питания кукурузы микроэлементами поступление аммонийного и нитратного азота заметно снижалось. Наибольшее снижение поглощения аммонийного азота отмечено при дефиците цинка, молибдена и избытке кобальта и марганца, максимальное уменьшение скорости поглощения нитратного азота — при недостатке меди и марганца. При избытке цинка в питательной смеси также снижалось поглощение аммонийного азота, а при дефиците меди повышалось. Нарушение питания молибденом и цинком увеличивало разницу в поглощении аммонийного и нитратного азота.

В целом при нарушении питания микроэлементами в первую очередь снижается поступление нитратного азота. Аммонийный азот быстрее включается в состав белков. При нарушении питания кобальтом и цинком заметно снижалась скорость включения в состав белков аммонийного азота.

Теоретические и практические исследования по микроудобрениям характеризуются стремлением исследователей изучить первичные реакции действия микроэлементов, проникнуть в специфичность их действия и понять физиологические закономерности. Интенсивно продолжаются работы по выяснению агрономической роли микроэлементов.

Для правильного применения микроудобрений важно знать потребность растений в микроэлементах (табл. 69).

69. Потребность сельскохозяйственных культур в микроэлементах (по данным научных учреждений, 1988) КультурыБСиМпМоZn Зерновые: озимая пшеница**** озимая рожь*—— яровая пшеница**** яровая рожь—** ячмень—***—— овес—*****Зернобобовые: горох—*** бобы**** люпин**——*Масличные: озимый рапс***** яровой рапс***** горчица** лен***——** Овощные: капуста цветная****** огурец***

Культуры

морковь

редис

редька

томат

капуста белокочанная лук

Пропашные: картофель сахарная свекла Кормовые:

клевер луговой

люцерна

люпин

кукуруза на силос и зеленую массу

В

Си

Продолжение Мп | Mo Zn

*

**

**

*

*

**

*

**

*

*

*

*

*

*

*

*

*

_ *

* *

** *

** *

* _

_ **

Примечание. — низкая потребность в элементе; * — средняя потребность; ** — высокая потребность.

У бобовых культур, например, содержание молибдена выше, и они аккумулируют в 2—10 раз больше железа, чем злаковые. Бобовые растения в большей степени, чем другие культуры, нуждаются в кобальтовых удобрениях. Неодинаковая потребность в микроэлементах различных растений, микроорганизмов и животных требует внимательного исследования. Это особенно важно в связи с применением микроэлементных подкормок в птицеводстве и животноводстве, решением вопросов о балансе элементов и охране окружающей среды.

Одним из критериев потребности растений в микроэлементах является их содержание в растениях (табл. 70). Обеспеченность растений микроэлементами определяют по уровню содержания их в почве. При этом наиболее важно не общее (валовое) количество в почве отдельных микроэлементов, а наличие подвижных форм, которые в какой-то степени определяют их доступность для растений. Содержание микроэлементов в подвижной форме чаще всего составляет для Си, Мо, Со и Zn 10—15 % от их валового содержания в почве, а для В — 2—4 %.

70. Содержание микроэлементов в растениях, мг/кг сухого вещества РастениеВМоМпСиZnСо Озимая пшеница_0,20-0,5512-783,7-10,28,7-35,50,06-0,10 (зерно) Яровая пшеница: зерно20,25-0,5011-1204-13011,4-75,00,05-0,13 солома2-460-1461,5-3,010-50 Рожь (зерно)—0,20-0,548-943,4-18,39,8-35,80,05-0,21 Продолжение РастениеВМоМпСиZnСо Ячмень:зерно20,39-0,468-1403,9-14,39,6-50,00,05-0,11 солома3-4—37-903,8-6,610-55— Овес:зерно2-30,28-0,7410-1204,0-13,98,4-50,00,02-0,14 солома—0,7463-1533,7-7,55-30— Горох (зерно)—0,70-8,407-255,2-23,314,1-56,10,12-0,35 Вика посевная (зерно)—1,20-2,5111-265,4-12,212,7-48,90,17-0,44 Тимофеевка40,40-0,8111-1355,8-26,310,2-40,10,05-0,28 Клевер12-400,28-3,5010-2784,5-20,814,0-1800,13-0,42 Кукуруза (зеленая1-20,20-0,8021-1973,0-11,55-360,07-0,40 масса)Люцерна (сено)6813-866,2-20,311-370,20-0,85 Сахарная свекла: корни12-170,10-0,2050-1905-715-840,05-0,29 листья20-350,40-0,60128-3256,9-8,4 14,7-124,0 0,25-0,50 Картофель (клубни)6—8-214,7-6,06-200,14-0,69 Капуста кормовая5-20—25-1353,5-6,95-350,04-0,20

Если валовые запасы микроэлементов в почве определяются главным образом их содержанием в материнских породах, то количество микроэлементов в подвижной форме зависит от типа почвы, характера материнских пород и растительности, а также от микробиологической активности почвы. Установлено существенное влияние кислотности почвы, ее окислительно-восстановительных и других условий на подвижность микроэлементов в почве, а следовательно, на их доступность растениям. Влияние отдельных почвенных условий довольно специфично для различных микроэлементов. Так, например, если подкисление существенно увеличивает подвижность большинства микроэлементов (Мп, Си, В, Zn и др.), то доступность растениям молибдена при этом значительно уменьшается.

Понятие «подвижность» пока не получило четкого определения в научной литературе. Большинство исследователей под этим термином подразумевают все формы и количество микроэлементов, переходящих в любую вытяжку: водную, солевую, в разбавленные сильные минеральные и слабые органические кислоты, щелочи и другие растворы. При этом часто между подвижными и доступными растениям формами микроэлементов не делают различий.

Агрохимическое обследование почв показало, что почвы отдельных биогеохимических провинций часто довольно бедны подвижными формами некоторых микроэлементов. Так, в Московской области около 80 % исследованных площадей нуждается во внесении борных удобрений; недостаток молибдена обнаружен на 60 % площадей, меди — на 50—60 %. Отсутствие градаций обеспеченности микроэлементами, разработанных специально для изучаемых почв и сельскохозяйственных растений, заставляет исследователей и практиков использовать любые имеющиеся стандарты.

Б. А. Ягодиным и И. В. Верниченко сделано обобщение литературного материала по обеспеченности почв основных биогеохи-мических зон подвижными формами микроэлементов, установленной на основании анализа почв и растений, а также в результате полевых и вегетационных опытов (табл. 71).

71. Градации обеспеченности почв России подвижными формами микроэлементов МикроэлементБиохимическаязонаПочвеннаявытяжкаОбеспеченность, мг/кг почвы оченьнизкаянизкаясредняявысокаяоченьвысокая ВТаежно-Н200,20,2-0,40,4-0,70,7-1,11,1 Силесная1,0 н. НС10,90,9-2,12,1-4,04,0-6,66,6 МоОксалатнаявытяжка0,080,08-0,14 0,14-0,300,30-0,460,46 Мп0,1 н. H2S041,01,0-25,025-6060-100100 Со1,0 н. HN040,40,4-1,01,0-2,32,3-5,05,0 Zn1,0 н. КС10,20,2-0,80,8-2,02,0-4,04,0 ВЛесоНэО0,20,2-0,40,4-0,80,8-1,21,2 Систепная1,0 н. НС11,41,4-3,03,0-4,44,4-5,65,6 МоистепнаяОксалатнаявытяжка0,100,10-0,23 0,23-0,380,38-0,550,55 Мп0,1 н. H2S042525-5555-9090-170170 Со1,0 н. HN031,01,0-1,81,8-2,92,9-3,63,6 Zn1,0 н. КС10,150,15-0,300,3-1,01,0-2,02,0 ZnАдетатно-аммонийная4,04,0-6,06,0-8,88,8— ВСухо1,0 н. KN030,40,4-1,21,2-1,71,7-4,54,5 Систепная и полу-степнаяHN03 (по Гюльахме-дову)1,01,0-1,81,8-3,03,0-6,06,0 МоТо же0,050,05-0,15 0,15-0,500,5-1,21,2 Мп»6,66,6-12,012-3030-9090 Со»0,60,6-1,31,3-2,42,4 Zn»0,30,3-1,31,3-4,04,0-16,416,4

Как видно из таблицы 71, диапазон применяемых вытяжек чрезвычайно велик — от сильных кислот до водных растворов. Значительная часть их агрессивна и вряд ли извлекает только доступные растениям микроэлементы. При сопоставлении размеров потребления микроэлементов растениями с их количеством в почве, извлекаемым агрессивными вытяжками, установлено, что растениями используется менее 1 % извлекаемых из почвы микроэлементов.

Необходимо отметить, что при оценке обеспеченности почв усвояемыми формами микроэлементов и разработке на их основе практических рекомендаций следует проявлять известную осторожность, так как имеются доказательства значительных изменений в содержании подвижных фракций микроэлементов в зависимости от времени взятия образца. Эти колебания иногда могут быть столь существенными, что в разные сроки вегетационного периода почва оказывается хорошо и слабо обеспеченной усвояемыми соединениями микроэлементов.

Внесение основных минеральных удобрений изменяет подвижность микроэлементов за счет pH и действует на поглощение микроэлементов в соответствии с явлениями синергизма и антагонизма. Например, внесение фосфора снижает поступление цинка и меди и иногда увеличивает поступление марганца. Внесение магния увеличивает поступление в растения фосфора. Применение органических веществ значительно изменяет адсорбцию всех минеральных элементов. В связи с этим можно ожидать, что наряду с анализом почвы на содержание подвижных микроэлементов более точное решение вопросов обеспеченности ими сельскохозяйственных растений можно получить с помощью самих растений.

В зависимости от количества микроэлементов в почвах Нечерноземной зоны определены следующие уровни обеспеченности их микроэлементами (табл. 72).

72. Группировка почв по обеспеченности растений микроэлементами ОбеспеченностьСодержание микроэлементов, мг/кг почвы В в водной вытяжкеМо в оксалатной вытяжкеСи в вытяжке 1 н. НС1Zn в вытяжке 1 н. НС1 Первая группа растений Низкая0,10,050,50,3 Средняя0,1-0,30,05-0,150,5-1,50,3-1,5 Высокая0,30,15 >1,51,5 Вторая группа растений Низкая0,30,20,21,5 Средняя0,3-1,00,2-0,32-41,5-3 Высокая0,50,343 Третья группа растений Низкая0,50,353 Средняя0,5-1,00,3-0,55-73-5 Высокая10,575 Примечание. Первая группа — культуры невысокого выноса микроэлементов и со сравнительно высокой усваивающей способностью: зерновые хлеба, кукуруза, зернобобовые, картофель. Вторая группа — культуры повышенного выноса микроэлементов, с высокой и средней усваивающей способностью: корнеплоды, овощи, травы (бобовые, злаковые, разнотравье), сады. Третья группа — культуры высокого выноса микроэлементов — все перечисленные выше культуры в условиях хорошего агротехнического фона: орошение, высокие дозы удобрений, использование лучших сортов, хорошие обработка почв и уход за растениями.

Применение микроудобрений в сельском хозяйстве — существенный резерв повышения урожаев культурных растений. В среднем микроудобрения обеспечивают повышение урожайности сельскохозяйственных культур на 10—12% и выше. Использование микроэлементов наиболее эффективно в регионах, почвы которых обеднены тем или иным микроэлементом. Такие почвы достаточно распространены. Так, по данным крупномасштабного агрохимического обследования почв, низкой и средней обеспеченностью подвижным бором характеризуется 37,3 %, молибденом—85,5, медью —64,9, цинком —94,0 кобальтом — 86,9, марганцем — 52,5 % общей площади пашни.

Для получения высоких урожаев сельскохозяйственных культур, имеющих сбалансированный элементный состав, требуются значительное расширение ассортимента и увеличение объема производства применяемых микроудобрений. Однако в настоящее время поступление солей микроэлементов в сельскохозяйственное производство резко сократилось, в то время как потребность земледелия России в микроэлементах на ближайшую перспективу оценивается в 12 тыс. т (табл. 73).

Экономический район, областьВМоСиZnСоМп Российская ФедерацияЦентральный:БрянскаяВладимирскаяИвановскаяКалужскаяМосковскаяРязанскаяСмоленскаяТульская961,4 165,8 1976,7392.0 54,5 170,8- 0,7 -- 0,6 -- 0,6 -- 0,6 -392.0 50,0 170,8- 0,8 -- 0,6 -- 0,6 - 73. Потребность земледелия Российской Федерации в микроудобрениях (т питательных веществ) (по данным ВНИПТИХИМ, 1999) 4800,01012,63063,0 350,0108,2638,0 59,912,246,7 14,18,149,7 12,06,113,1 25,57,814,9 58,938,0412,8 59,3120,546,6 77,116,846,7 43,28,77,5

В качестве дополнительного источника микроэлементов используют некоторые промышленные отходы, например металлургические шлаки, пиритные огарки, осадки сточных вод и др. Следует отметить, что удобрения подобного типа не всегда содержат питательные вещества в доступной для растений форме и часто имеют высокотоксичные примеси.

Существенный вклад в решение этой проблемы могут внести разработанные микроудобрения на лигнинной основе «МиБАС», изготовляемые из отходов предприятий целлюлозно-бумажной промышленности, полиграфического, электронного, машиностроительного и других производств. Разработанные технологии утилизации этих отходов позволяют извлекать необходимые компоненты в чистом виде и получать из них экологически безопасные удобрения. При этом решается комплекс задач — утилизируются большие количества лигнинсодержащих отходов целлюлозно-бумажного производства и металлсодержащих отходов других производств, а также удовлетворяются потребности сельского хозяйства в микроудобрениях.

Отличительная особенность новых удобрений — лигнинная (отход целлюлозно-бумажной промышленности) основа, обеспечивающая полимерную пленку на поверхности, например семени, и надежное прилипание к этой поверхности. В ассортименте микроудобрений «МиБАС» — медь-, цинк- и кобальтсодержащие композиции. Удобрения «МиБАС» технологичны при использовании, не пылят, совместимы со средствами защиты растений. В ряде полевых и производственных опытов установлена эффективность этих микроудобрений.

Микроудобрения на лигнинной основе «МиБАС» выпускают в двух модификациях: гранулированный препарат пролонгированного действия для основного внесения в почву и жидкий концентрат для предпосевной обработки семян. Содержание микроэлемента в гранулированных формах 10 ±5%, в концентрате, который перед обработкой семян разбавляют в 3 раза, 1,3 ±0,3%. Расход гранулированных удобрений 50—150 кг/га, жидкой композиции (разбавленного препарата) 10—20 кг/т семян.

Вносить микроэлементы в почву лучше в составе основных минеральных удобрений (суперфосфата и аммофоса, нитроаммофо-сок, хлорида калия и др.). Перспективно вводить микроэлементы в состав длительно действующих удобрений, а также применять их с поливной водой при дождевании.

На основе данных о содержании микроэлементов в почве и растениях определяют дозы микроэлементов, необходимые для внесения. Дозы микроудобрений колеблются в зависимости от почвенно-климатических условий, биологических особенностей культур и других факторов. Ориентировочные дозы микроудобрений для отдельных культур даны в таблице 74.

74. Дозы и способы применени^мпл^уда^ений для различных культур МикроэлементВнесение в почву, кгд.в. на 1 гаПредпосевная обработка семян, г на 1 тНекорневая подкормка, г д.в. на 1 га до посевав рядки Зерновые В—0,230-4020-30 Си0,5-1,00,2170-18020-30 Мп1,5-3,01,580-10015-25 Zn1,2-3,0100-15020-25 Мо0,60,250-60100-150 Со——40-50Продолжение МикроэлементВнесение в почву, кг д.в. на 1 гаПредпосевная обработка семян, г на 1 тНекорневая подкормка, г д.в. на 1 га до посевав рядки Зерновые бобовые В0,3-0,5—20-4015-20 Си——120-16020-25 Мп1,5-3,0—100-120— Zn2,50,580-10017-22 Мо0,15-0,30—40-508-11 Со0,50,5150-16025-30 Кукуруза В—0,220-405-10 Си3,00,5120-14020-30 Мп2,0-4,01,550-60— Zn1,0-3,01,5150-20017-22 Мо——70-8010-15 Со0,60,2170-18020-40 Свеклаи кормовые корнеплоды В0,5-0,80,15120-16025-35 Си0,8-1,50,380-12070 Мп2,0-5,00,590-10020-25 Zn1,2-3,00,5140-15055-65 Мо0,15-0,300,1100-12017-22 Со0,50,15100-150100-200 Овощные и картофель В0,4-0,8—100-150— Си0,8-1,5——20-254 Мп2,0-5,0—100-150— Zn0,7-1,2—— Мо0,15-0,304——10-154 Со——80-100150; 25-304

Наиболее распространенный вид медных удобрений — пиритные (колчеданные) огарки (0,2—0,3 Си). Их вносят в почву (500— 600 кг/га) под зяблевую обработку один раз в 4—5 лет.

Бор. Обнаружен в золе растений в 50-х годах прошлого столетия. Этот элемент широко распространен в природе в виде кислородных соединений борсодержащих минералов борной кислоты (Н3В03) и буры (Na2B407 10Н2О).

Среднее содержание бора в растениях 0,0001 %, или 1 мг на 1 кг массы. Наиболее нуждаются в боре двудольные растения. Обнаружено значительное содержание этого элемента в цветках, особенно в рыльцах и столбиках. В растительных клетках большая часть бора находится в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без бора нарушается процесс созревания семян. Он снижает активность окислительных ферментов, оказывает влияние на синтез и передвижение стимуляторов роста.

Бор необходим растениям в течение всей жизни. Он не может реутилизироваться в растениях, поэтому при его недостатке особенно страдают молодые растущие органы. Возникают заболевание и отмирание точек роста.

В растениях бор улучшает углеводный обмен, влияет на белковый и нуклеиновый обмен. При его недостатке нарушаются синтез, превращение и передвижение углеводов, формирование репродуктивных органов, оплодотворение и плодоношение.

Согласно концепции М. Я. Школьника у двудольных растений при недостатке бора происходят следующие нарушения физиологических процессов: вначале накапливаются фенолы, фенольные ингибиторы ауксиноксидазы увеличивают накопление ауксинов, нарушаются нуклеиновый обмен и биосинтез белка. Затем наступает нарушение структуры клеточных стенок и хода деления клеток. Впоследствии происходит побурение тканей из-за увеличения под влиянием фенолов проницаемости тонопласта вакуолей и проникновения полифенолов в цитоплазму.

Считается, что основная физиологическая роль бора заключается в участии в обмене ауксинов и фенольных соединений. Регулирование количества ауксинов и фенолов, по-видимому, является основной физиологической функцией бора. Бор не входит в состав ферментов, но активирует ауксиноксидазу и р-глюкозидазу.

При недостатке бора растения поражаются сухой гнилью (корнеплоды), коричневой гнилью (цветная капуста), дуплистостью (турнепс и брюква), бактериозом, желтеют (люцерна), усыхают их верхушки (табак), нарушается оплодотворение у льна, отмирает точка роста у подсолнечника.

Особенно чувствительны к недостатку бора подсолнечник, люцерна, кормовые корнеплоды, лен, рис, кормовая капуста, овощные культуры, сахарная свекла.

Высокие дозы бора вызывают у растений токсикоз, при этом бор в первую очередь накапливается в листьях. Избыток бора вызывает своеобразный ожог нижних листьев, появляется краевой некроз, листья желтеют, отмирают и опадают.

Различные сельскохозяйственные культуры неодинаково реагируют на повышенное содержание бора в почве. Так, зерновые культуры страдают от избытка уже при содержании подвижного бора 0,7—8,8 мг/кг почвы, а люцерна и свекла могут переносить концентрацию бора в почве свыше 25 мг/кг почвы. Содержание бора в подвижной форме свыше 30 мг/кг почвы является причиной тяжелых заболеваний растений и животных.

Порог токсичности бора определяется не только его содержанием, но и количеством и соотношением других элементов питания. Хорошая обеспеченность растений кальцием и фосфором повышает их требовательность к обеспеченности бором.

Особенно большую роль играет бор в условиях известкования кислых подзолистых почв, так как известкование уменьшает доступность бора, закрепляет его в почве и задерживает поступление в растения. Внесение бора на известкованных почвах полностью устраняет заболевание корнеплодов гнилью сердечка и картофеля паршой.

На внесение борных микроудобрений положительно отзываются клевер, люцерна, картофель, гречиха, кукуруза, зерновые бобовые, виноград, яблоня и др.

Бором бедны дерново-подзолистые, дерново-глеевые, заболоченные почвы легкого гранулометрического состава. В почвах тундры валовое содержание бора 1—2 мг/кг, подвижного — до 0,1 мг/кг, в дерново-подзолистых почвах — соответственно 2—5 и 0,04—0,60 мг/кг.

Внесение бора целесообразно, если содержание подвижных форм в почве Нечерноземной зоны менее 0,2—0,5 мг/кг почвы, в Черноземной — 0,30—0,65.

Применение бора на бедных этим микроэлементом почвах повышает урожайность льносоломы на 0,2—0,3 т/га, сахарной свеклы — в среднем на 4,5 т/га при одновременном увеличении содержания сахара в корнях на 0,3—2,1 % (табл. 75).

75. Эффективность борных удобрений на дерново-подзолистых почвах КультураСредняя урожайность, т/гаПрибавка от бора, т/га Сахарная свекла24,63,8 Сахарная свекла (торфяно-болотные почвы)37,63,7 Лен (семена)0,560,12 Картофель21,64,0 Морковь33,45,6 Капуста49,212,4 Томат55,75,1

В качестве борных удобрений в сельском хозяйстве используют в основном боросуперфосфат и бормагниевые удобрения:

Удобрение

Содержание бора в водорастворимой форме, %

Боросуперфосфат в первую очередь применяют в районах свеклосеяния и льноводства.

Боросуперфосфат, содержащий 0,2 % В, применяют под сахарную свеклу, кормовые корнеплоды, зерновые бобовые, гречиху, подсолнечник, огурец, овощи, плодово-ягодные. При основном внесении используют дозу 200—300 кг/га, а в рядки при посеве — 100—150 кг/га. Под лен, огурец, овощи, плодово-ягодные вносят 150 кг/га, а под лен еще и в рядки — 50 кг/га.

Бормагниевое удобрение (2,2 % В) применяют под сахарную свеклу, кормовые корнеплоды, зерновые бобовые, гречиху и лен, в почву в смеси с другими удобрениями вносят в дозе 20 кг/га.

Борная кислота (17 % В) используется для некорневых подкормок в дозе 500—600 г/га под семенники многолетних трав и овощных культур, для плодово-ягодных — 700—800 г/га и предпосевной обработки семян различных сельскохозяйственных растений — в дозе 100 г борной кислоты на 100 кг семян (табл. 76).

76. Применение борных удобрений под различные культуры МикроудобрениеКультурыДоза на 1 гаСпособ применения БоросуперСахарная свекла, кормовые200-300 кгВ почву при основном фосфаткорнеплоды, зерновыевнесении (0,2 % В)бобовые, гречиха100-150 кгВ рядки при посеве Лен100-500 кгВ почву при основном внесении 50 кгВ рядки при посеве Огурец, овощи, плодово-100-150 кгВ почву при основном ягодныевнесении БорнаяСеменники многолетних500-600 гДля предпосевной обра кислотатрав и овощных культурботки (17% В)Плодово-ягодные700-800 гНекорневые подкормки БормагСахарная свекла, кормовые20 кгВ почву в смеси с мине ниевоекорнеплоды, зерновыеральными удобрениями удобрение (2,2% В)бобовые, гречиха, лен

Медь. Среднее содержание меди в растениях 0,0002 %, или 2 мг на 1 кг массы, и зависит от их видовых особенностей и почвенных условий. С урожаем различных культур с 1 га выносится 7—27 г меди (табл. 77).

77. Содержание меди в растениях, выращенных на дерново-подзолистой почве и мощном черноземе (по Каталымову) РастениеДерново-подзолистые почвыМощный чернозем урожайность,т/гасодержание Си, мг/кгурожайность,т/гасодержание Си, мг/кг Яровая пшеница: зерно2,37,71,05,2 солома2,43,01,41,5 Овес: зерно2,25,82,03,6 солома3,97,52,13,7 Вика яровая (сено)4,012,22,54,7 Картофель: клубни27,06,0 ботва50,018,0— Свекла сахарная: корни54,26,428,06,5 листья45,08,410,06,9

В растительной клетке около 2/3 меди может находиться в нерастворимом, связанном состоянии. Относительно богаты медью семена и наиболее жизнеспособные, растущие части растений. 70 % всей меди, находящейся в листе, сконцентрировано в хло-ропластах. Физиологическая роль меди в значительной степени определяется ее вхождением в состав медьсодержащих белков и ферментов, катализирующих окисление дифенолов и гидроксили-рование монофенолов: ортодифенолоксидазы, полифенолоксида-зы и тирозиназы.

Наиболее изученный медьсодержащий фермент — цитохром-оксидаза. Предполагается, что медь и железо цитохромоксидазы входят в один активный центр фермента.

Важные функции в растениях выполняет медьсодержащий белок — пластоцианин. Почти половина всей меди в листьях у ряда растений находится в форме пластоцианина.

Недостаточная обеспеченность растений медью резко отрицательно отражается на активности медьсодержащих ферментов.

Определенные функции выполняет данный элемент в азотном обмене, входя в состав нитритредуктазы, гипонитритредуктазы и редуктаз оксида азота. В результате влияния меди на биосинтез леггемоглобина и активность ряда ферментных систем этот фермент усиливает процесс связывания молекулярного азота атмосферы и усвоение азота почвы и удобрения.

Имеются данные об увеличении под действием меди прочности хлорофилл-белкового комплекса, уменьшении разрушения хлорофилла в темноте и в целом о положительном действии меди на процесс озеленения у всех растений.

За счет инактивирования медьсодержащим ферментом поли-фенолоксидазой ауксинов медь снижает ингибирующее действие на рост высоких доз этих ростовых веществ. Черный пигмент меланин образуется за счет окисления аминокислоты тирозина, осуществляемого ферментом тирозиназой, в состав которой входит медь. Отсутствие данного фермента вызывает альбинизм — отсутствие у растений зеленой окраски. Потемнение битых картофелин, яблок и т. д. также вызывается тирозиназой.

Как известно, этилен задерживает дифференциацию тканей и ингибирует деление клеток, синтез ДНК, рост растений. Для биосинтеза этилена необходим медьсодержащий фермент. Снижение содержания в растениях фенольных ингибиторов ведет к вытягиванию стеблей и полеганию растений. По-видимому, благодаря регулирующему действию на содержание в растениях ингибиторов роста фенольной природы медь повышает устойчивость растений к полеганию. Она способствует увеличению засухо-, морозо- и жароустойчивости растений.

Недостаток меди вызывает задержку роста, хлороз, потерю тургора и увядание растений, задержку цветения и гибель урожая. У злаковых растений при остром дефиците меди происходит поведение кончиков листьев и не развивается колос (белая чума или болезнь обработки), у плодовых при недостатке меди появляется суховершинность.

Валовое содержание меди в различных почвах колеблется в широких пределах —от 0,1 до 150мг/кг почвы. В пахотном горизонте почвы в подвижной форме находится в основном двухвалентный катион меди в обменно-поглощенном состоянии. Медь содержится в почвенных минералах и органическом веществе. Наибольшее количество меди в почве связывается монтмориллонитом и вермикулитом, оксидами Fe и Мп, гидроксидами Fe и Al. С медью способны образовывать устойчивые комплексы гуминовые и фульвокислоты. Поэтому наиболее бедны медью верховые торфяники, дерново-карбонатные, болотные и заболоченные, песчаные и супесчаные почвы. Известкование кислых почв уменьшает поступление меди в растения, так как способствует ее закреплению в почве. Известь действует как адсорбент меди, а также путем подщелачивания создает лучшие условия для образования комплексов органических соединений с медью.

Растения испытывают недостаток меди, а почвы считаются бедными по содержанию этого элемента, если в почвах Нечерноземной зоны содержится меди менее 1,5—2,0 мг, в Черноземной зоне — менее 2,0—5,0 мг на 1 кг почвы.

Потребность в меди в основном проявляется в Северо-Западном, Центральном, Волго-Вятском районах Российской Федерации.

На некоторых осушенных торфяниках из-за недостатка меди вообще не удается получить урожай сельскохозяйственных культур. По результатам опытов, внесение медных удобрений на торфоболотных и легких супесчаных почвах приводит к увеличению урожайности зерновых культур на 0,2—0,5 т/га.

Наиболее отзывчивы на медные удобрения пшеница, овес, ячмень, травы, лен, конопля, корнеплоды, луговой клевер, просо, подсолнечник, горчица, сахарная и кормовая свекла, кормовые бобы, горох, овощные и плодово-ягодные культуры. Потребность в меди возрастает в условиях применения высоких доз азотных удобрений.

В перспективе потребность сельского хозяйства страны в медных удобрениях целесообразно удовлетворять за счет медного купороса и медно-калийных удобрений.

Медные удобрения, имеющие местное значение, — пиритные огарки (0,2—0,3 % Си). Их вносят один раз в 4—5 лет в дозе 500— 600 кг/га осенью под зяблевую вспашку или весной под предпосевную культивацию.

Для опудривания семян берут 50—100 г сульфата меди на 100 кг семян, для некорневых подкормок доза сульфата меди на 1 га посевов — 200—300 г. Сульфат меди содержит 25,4 % меди (табл. 78).

78. Ассортимент медных удобрений

Удобрение

Действующее вещество

Содержание д. в. в водо-растворимой форме, %

Медный купорос (сульфат меди) CuS04 • 5Н,0 92,0—98,0

Си ' 23,4-24,9

К20 58,6 ±0,6

Марганец. Наличие марганца в растительных организмах отмечено еще в 1872 г., однако длительное время он не считался нужным для питания растений. К. К. Гедройц установил, что марганец лучше действует на известковом фоне. Необходимость марганца для растений отмечал Ф. В. Чириков.

Особенно требовательны к достаточному содержанию доступных форм марганца в почве злаки, свекла, кормовые корнеплоды, картофель. С урожаем различных культур с 1 га выносится 1000— 4500 г марганца (табл. 79).

79. Содержание в растениях марганца и его вынос с урожаем сельскохозяйственных культур на разных почвах (по Каталымову) РастениеДерново-подзолистая почваМощный чернозем урожай, т/гасодержание Мп, мг/кгурожай, т/гасодержание Мп, мг/кг Сахарная свекла: корни54,28828,050 листья45,072511,0180 Картофель: клубни27,07• — ботва50,0298—— РастениеДерново-подзолистая почваМощный чернозем урожай, т/гасодержание Мп, мг/кгурожай, т/гасодержание Мп, мг/кг Овес: зерно2,2882,056 солома3,91342,163 Вика яровая (сено) Ячмень:4,01152,545 зерно2,0401,530 солома2,9912,037

Марганец необходим всем растениям. Среднее содержание его в растениях 0,001 %, или 10 мг на 1 кг массы. Основное количество его сосредоточено в листьях и хлоропластах.

Марганец относится к металлам с высоким окислительно-восстановительным потенциалом и может легко участвовать в реакциях биологического окисления.

Выявлено прямое участие марганца в фотосинтезе. Показано восстановление скорости процесса через 20 мин после добавления марганца у дефицитных по марганцу растений. Установлено участие марганца в системе выделения кислорода при фотосинтезе и в восстановительных реакциях фотосинтеза. Марганец увеличивает содержание сахаров, хлорофилла, прочность его связи с белком, улучшает отток сахаров, усиливает интенсивность дыхания.

Для понимания физиологической роли марганца важно указать на вхождение его в гидроксиламинредуктазу, осуществляющую реакцию восстановления гидроксиламина до аммиака, и в ассимиляционный фермент, восстанавливающий диоксид углерода при фотосинтезе. Марганец играет большую роль в активировании многих реакций, в том числе в реакциях превращения ди- и трикарбоновых кислот, образующихся в процессе дыхания. Предполагают, что марганец входит в состав фермента, синтезирующего аскорбиновую кислоту. Кроме того, марганец входит в состав следующих ферментов: малатдегидрогеназы, изоцитратдегидроге-назы, гидроксиламинредуктазы, глутаминтрансферазы, ферредок-сина. В настоящее время известно около 30 металлоферментных комплексов, активируемых марганцем.

Марганец играет важную роль в механизме действия индолил-уксусной кислоты на рост клеток. Показана необходимость марганца как кофактора ауксиноксидазы для энзиматического разрушения индолилуксусной кислоты. Наряду с кальцием марганец способствует избирательному поглощению ионов из внешней среды. При исключении марганца из питательной среды в тканях растений повышается концентрация основных элементов минерального питания, нарушается соотношение элементов в питательном

балансе. Имеются данные о положительном влиянии марганца на передвижение фосфора из стареющих нижних листьев к верхним и к репродуктивным органам. Марганец повышает водоудерживающую способность тканей, снижает транспирацию, влияет на плодоношение растений.

При остром недостатке марганца отмечены случаи полного отсутствия плодоношения у редиса, капусты, томата, гороха и других культур. Марганец ускоряет развитие растений. При недостатке этого элемента наблюдаются хлорозы, серая пятнистость злаков, пятнистая желтуха сахарной свеклы.

Несмотря на значительное содержание марганца в почве (в желтоземах 1 % и выше, в дерново-подзолистых и черноземных почвах 0,1—0,2 %), большая часть этого элемента находится в ней в виде труднорастворимых оксидов и гидратов оксидов. В почве марганец находится в основном в двухвалентной форме и в силикатах и оксидах может замещать Fe2+ и Mg2+, что ведет к их выщелачиванию. В кислых почвах Мп образует с гидроксидами Fe железомарганцевые конкреции.

За счет высокого содержания Мп в почве количество этого элемента в почвенном растворе может достигать 2200 мкг/л, образуя комплексы с фульвокислотами. При близкой к нейтральной реакции почвенного раствора (pH от 6 до 8) растения могут испытывать недостаток марганца вследствие перехода его в труднорастворимые соединения. В практике для предотвращения быстрого связывания ионов металлов почвой и улучшения их усвоения растениями широкое распространение получили хелаты марганца и железа, применяемые вместе с поливной водой, а в ряде случаев и для некорневых подкормок. Хелаты микроэлементов широко используют; так, например, в Швеции применяют некорневые подкормки сахарной свеклы хелатом с содержанием 6 % марганца, в качестве лиганда используется ЭДТА. В опытах, проведенных в Великобритании, обработка этим препаратом повысила урожайность яровой пшеницы с 2,8 до 4,7 т/га.

Перспективно применение марганца при содержании его в почвах Нечерноземной зоны 25—55 мг, Черноземной — 40—60 и на сероземах 10—50 мг на 1 кг почвы.

Марганцевые удобрения в первую очередь следует вносить на серых лесных почвах, слабовыщелоченных черноземах, солонцеватых и каштановых почвах под овес, пшеницу, кормовые корнеплоды, картофель, сахарную свеклу, кукурузу, люцерну, подсолнечник, плодово-ягодные, цитрусовые и овощные культуры.

На черноземах прибавка урожайности сахарной свеклы от марганцевых удобрений составляет 1,0—1,5 т/га, а сахаристость корней возрастает на 0,2—0,6 %, урожайность зерновых культур, в том числе озимой пшеницы, увеличивается на 0,15—0,30 т/га (табл. 80).

80. Действие марганца на урожай сельскохозяйственных культур (по П. А. Власюку), т/га КультураУрожай без применения МпПрибавка урожая от Мп Сахарная свекла (корни)31,02,37 Озимая пшеница (зерно)3,340,21 Яровая пшеница (зерно)1,750,22 Кукуруза (зерно)5,781,18

В качестве марганцевых удобрений используют в основном отходы предприятий марганцово-рудной промышленности. Отходы содержат чаще всего 10—18% марганца. Дорогостоящий сернокислый марганец в основном используют для нужд тепличного овощеводства. Учитывая, что марганец наиболее эффективен на фоне фосфорных удобрений, целесообразно производить марга-низированный суперфосфат (табл. 81).

81. Ассортимент марганцевых удобрений

Удобрение

Действующее вещество

Содержание д. в. в водо-растворимой форме, %

Марганизированный суперфосфат Р205 20 ± 1

Мп 1-2

Сернокислый марганец MnS04 70

При внесении в почву доза марганца в расчете на элемент составляет 2,5 кг/га. Около 30 % марганцевых удобрений необходимо сельскому хозяйству в виде сернокислого марганца для некорневых подкормок и предпосевной обработки семян. Один из способов применения марганца — опудривание семян: 50—100 г сернокислого марганца смешивают с 300—400 г талька и этой смесью обрабатывают 100 кг семян сахарной свеклы, пшеницы, ячменя, кукурузы, гороха, подсолнечника. Для некорневых подкормок полевых культур расходуют на 1 га 200 г сернокислого марганца, для опрыскивания плодовых и ягодных культур — 600—1000 г/га.

Молибден. Наибольшее количество молибдена в растениях отмечено у бобовых. В семенах бобовых трав может содержаться от 0,5 до 20,0 мг Мо на 1 кг сухой массы, а в злаках — от 0,2 до

1,0 мг на 1 кг сухой массы. Содержание молибдена в растениях может колебаться в пределах 0,1—300 мг на 1 кг сухой массы; повышенное содержание бывает при несбалансированном питании.

Молибден необходим растениям в меньших количествах, чем бор, марганец, цинк и медь. Он локализуется в молодых растущих органах. Листья содержат его больше, чем стебли и корни. Много молибдена в хлоропластах.

Нижним пределом содержания молибдена для большинства растений считается 0,10 мг на 1 кг сухой массы и для бобовых — 0,40 мг на 1 кг. Ниже этих величин возможна недостаточность молибдена. Со средним урожаем пшеницы с 1 га выносится до 6 г этого элемента, а с урожаем клевера — до 10 г.

В растениях молибден входит в состав фермента нитратредук-тазы и является необходимым компонентом цепи редукции нитратов, участвуя в восстановлении нитратов до нитритов. Молибден можно назвать микроэлементом азотного обмена растений, так как он входит также и в состав нитрогеназы — фермента, осуществляющего в процессе биологической фиксации азота связывание азота атмосферы. Участие молибдена в фиксации молекулярного азота атмосферы объясняет его особое значение для роста и развития бобовых культур.

При недостатке молибдена в питательной среде в растениях нарушается азотный обмен, в тканях накапливается большое количество нитратов. В организме животных и человека при избыточном потреблении нитратов происходит образование канцерогенных соединений — нитрозаминов. По нашим данным, молибден участвует в азотном обмене не только путем вхождения в нитрат-редуктазу и нитрогеназу. Под влиянием молибдена в клубеньках бобовых культур усиливается активность дегидрогеназ — ферментов, обеспечивающих непрерывный приток водорода, который необходим для связывания азота атмосферы.

Молибден участвует в ряде физиологических процессов у растений — биосинтезе нуклеиновых кислот, фотосинтезе, дыхании, синтезе пигментов, витаминов и т. д. По-видимому, речь идет о его косвенном, хотя и достаточно сильном, влиянии через метаболическую систему на эти процессы.

Специфическая роль молибдена в процессе азотфиксации обусловливает улучшение азотного питания бобовых культур при внесении молибденовых удобрений и повышает эффективность применяемых под них фосфорно-калийных удобрений. При этом наряду с ростом урожая повышается содержание белка. Внесение молибдена под небобовые культуры благодаря усилению ассимиляции нитратного азота приводит к повышению размеров использования и продуктивности усвоения азота удобрений (не только нитратных, но и аммиачных и амидных вследствие их быстрой нитрификации) и почвы, к снижению непроизводительных потерь азота вследствие денитрификации и вымывания нитратов. Это убедительно показано в исследованиях с I5N на овощных культурах, а также в опытах с хлопчатником.

Чувствительны к недостатку доступных форм молибдена, часто наблюдаемому на кислых почвах, люцерна, клевер, горох, бобы, вика, капуста, салат, шпинат и другие растения. Внешние признаки умеренного дефицита молибдена у бобовых растений сходны с симптомами азотного голодания. При более резком дефиците молибдена резко тормозится рост растений, не развиваются клубеньки на корнях, растения приобретают бледно-зеленую окраску, листовые пластинки деформируются и листья преждевременно отмирают.

Высокие дозы молибдена весьма токсичны для растений. Значительное содержание молибдена — 1 мг на 1 кг сухой массы — в сельскохозяйственной продукции вредно для здоровья животных и человека. В случаях, когда содержание молибдена в растениях достигает 20 мг и более на 1 кг сухой массы, у животных при употреблении свежих растений наблюдаются молибденовые токсикозы, а у человека — эндемическая подагра. Токсичное действие молибдена ослабляется при высушивании или промораживании растений, так как при этом снижается количество растворимых форм Мо, а также при добавлении меди в пищу животных и человека.

На внесение молибденовых удобрений отзывчивы люцерна, клевер, соя, кормовые бобы, вика, цветная капуста, корнеплоды, рапс, кормовая капуста, овощные культуры.

Содержание валового молибдена в почве колеблется от 0,20 до 2,40 мг, а подвижных форм — от 0,10 до 0,27 мг на 1кг почвы. Обычно в пахотном горизонте почв количество подвижных форм молибдена от валового содержания составляет 8—17 %. Наиболее бедны молибденом почвы легкого гранулометрического состава с низким содержанием гумуса. Наименьшее содержание подвижного молибдена отмечено в дерново-подзолистых, песчаных почвах (0,05 мг/кг). Более высокое содержание валовых и подвижных форм молибдена в черноземных почвах указывает на его биологическую аккумуляцию.

Обычно молибден содержится в почве в окисленной форме в виде молибдатов кальция и других металлов. В кислых почвах (pH < 5,5) молибден образует плохо растворимые соединения с алюминием, железом, марганцем, а в щелочных — хорошо растворимое соединение молибдата натрия.

Количество водорастворимых форм молибдена увеличивается при снижении кислотности почвенного раствора. Поглощение молибдена растениями при известковании повышается, но при pH 7,5—8,0 начинает снижаться вследствие увеличения количества карбонатов в почве.

Молибденовая недостаточность может проявляться на дерново-подзолистых, серых лесных почвах, осушенных кислых торфяниках и черноземных почвах.

Положительное влияние молибдена на величину и качество урожая овощных культур обусловлено не только лучшим усвоением растениями азота удобрений, но и улучшением использования азота из почвы (табл. 82).

Использование за два повторных посева в год (среднее за два года) Вариант опытавсего,мг/сосудиз почвыиз удобрения мг/сосуд% к фону РКмг/сосуд% от внесенного РК514514100__ РК + Мо612612119—— NPK99271213428039 NPK + Мо115882115833747

Улучшение азотного питания растений под влиянием молибдена, в свою очередь, способствует большему использованию культурами других элементов минерального питания, в том числе фосфора и калия, из почвы и удобрений. Применение молибдена на почвах с недостаточным его содержанием обеспечивает наряду с ростом урожая более полное включение поступившего в растения азота в состав белка. Кроме того, оно ограничивает опасность накопления в продукции, особенно в овощах и пастбищном корме, нитратов в количествах, токсичных для человека и животных, при использовании высоких доз азотных удобрений и на органогенных почвах с интенсивной минерализацией азота. Все это обусловливает целесообразность совместного применения молибдена с азотными односторонними и комплексными удобрениями под небобовые культуры, требовательные к молибдену, а также под бобовые совместно с фосфорно-калийными удобрениями на почвах с относительным недостатком этого элемента.

По данным полевых опытов, средняя прибавка урожая гороха от применения молибдена на дерново-подзолистых, серых лесных почвах и выщелоченных черноземах составляет 0,26 т/га, сена и семян клевера на дерново-подзолистых почвах — соответственно 1,30 и 0,08 т/га (табл. 83).

83. Средние прибавки урожая бобовых культур от применения молибдена (данные ВИУА), т/га КультураДерново-подзолистые почвыСерые лесные почвы число опытовприбавка от Мочисло опытовприбавка от Мо Горох (зерно)340,29220,36 Вика: зерно100,51140,49 зеленая масса23,4095,16 Соя (зерно)130,2710,19 Кормовые бобы (зерно)220,4950,32 Клевер: сено581,30 семена180,08 Люцерна (семена)150,9391,82

Эффективно применение молибдена под бобовые культуры на кислых почвах. Вследствие усиления симбиотической азотфикса-ции бобовыми под действием молибдена улучшается снабжение растений азотом, повышаются урожай и содержание в нем белка. Высокая эффективность молибденовых удобрений при достаточном уровне обеспеченности другими элементами питания достигается при содержании молибдена в почвах Нечерноземной зоны менее 0,15 мг, в Черноземной — менее 0,15—0,30 мг на 1 кг. Применение молибденовых удобрений на бобово-злаковых сенокосах и пастбищах повышает количество бобовых растений в травостое, содержание белка в корме и общую продуктивность угодий (табл. 84).

84. Действие и последействие молибдена на урожайность и ботанический состав травостоя (по Шарову) Вариант опытаУрожайность сена, т/гаБотанический состав травостоя, % действиепоследействиебобовыезлакиразнотравье Без молибдена2,462,51274627 Некорневая подкормка молибденом (150 г/га)3,203,49433522

Ассортимент молибденовых удобрений достаточно широк (табл. 85). Однако промышленность в основном в качестве молибденовых удобрений поставляет молибденовокислый аммоний. В ряде регионов в качестве молибденовых удобрений используют отходы электроламповой промышленности.

85. Ассортимент молибденовых удобрений УдобрениеДействующее веществоСодержание д. в. в водорастворимой форме, % Молибдат аммонияМо52 Отходы электроламповой промышленностиМо5-8 Суперфосфат простой гранулированныйр20520 с молибденомМо0,1 Суперфосфат двойной гранулированныйРА43 с молибденомМо0,2 Из способов применения молибденовых удобрений наиболее эффективна и экономически выгодна предпосевная обработка семян. Для обработки 100 кг крупных семян расход молибдата аммония или молибдата аммония-натрия составляет 25—50 г, а на 100 кг семян клевера или люцерны — 500—800 г (табл. 86). Удобрение| КультураДоза| Способ применения Молибденовый суперфосфат (0,2 % Мо)Зерновые бобовые50 кг на 1 га в рядки при посевеВнесение в почву Молибденовокис-Горох, вика, соя и25—50 г в 1,5—Предпосевная лый аммонийдругие крупносе-2,0 л воды наобработка семян (50 % Мо)мянные100 кг семян Клевер, люцерна500—800 г в 3 л воды на 100 кг семянТо же Горох, кормовые200 г в 100 л водыНекорневая под бобы, клевер, люцерна и другие бобовые, выращиваемые на зерно; овощные, плодово-ягодные Долголетние культурные пастбища(авиаобработка)200-600 г в 100 л воды (авиаобработка)кормка в период бутонизация — начало цветенияТо же

Некорневые подкормки проводят из расчета 200 г молибденовокислого аммония на 1 га посева, для долголетних культурных пастбищ — 200—600 г на 1 га посева.

Перспективной формой удобрений является молибденизированный суперфосфат, предназначенный для внесения в рядки в дозе 50 кг/га (или 50—100 г/га молибдена).

Цинк. Вынос цинка с урожаем полевых культур составляет от 75 до 2250 г/га. Повышенной чувствительностью к недостаточности цинка характеризуются гречиха, хмель, свекла, картофель, клевер луговой. Сорные растения содержат больше цинка, чем культурные. Повышенным содержанием цинка отличаются хвойные растения; наиболее высокое содержание цинка у ядовитых грибов. Потребность в цинке у полевых культур ниже, чем у плодовых.

За счет некоторой стабилизации дыхания при резкой смене температур цинк повышает жаро- и морозоустойчивость растений. Имеются данные о влиянии цинка на утилизацию фосфора растениями. При недостатке цинка обнаруживается высокая концентрация неорганического фосфора в растениях. У гороха и томата при недостатке цинка увеличивается поступление фосфора в растения, однако утилизация его нарушается. При этом в несколько раз возрастает содержание неорганического фосфора и снижается содержание фосфора в составе нуклеотидов, в том числе и нуклеотидов с макроэргическими связями, а также липидов и нуклеиновых кислот. После добавления цинка в питательный раствор использование поглощенного фосфора растениями нормализуется.

Имеются данные об изменении под действием цинка накопле-

ния фосфора корнями и замедлении транспорта фосфора в надземные органы растения, о связывании цинка в почве соединениями фосфора. Недостаток цинка замедляет превращение неорганических фосфатов в органические формы.

Большой интерес представляет роль цинка в биосинтезе предшественников хлорофилла и в фотосинтезе. В этиолированных и зеленых листьях кукурузы обнаружен цинкпротопорфирин, который может быть предшественником железопорфиринов, а возможно, и магний-порфирина. Непосредственно в реакциях фотосинтеза, как это установлено для Mn, Си, Fe, участие цинка не отмечено, но он участвует в образовании предшественников хлорофилла.

Определенную роль в фотосинтезе может выполнять цинксодержащий фермент карбоангидраза. Роль карбоангидразы в зеленых растениях заключается в улавливании диоксида углерода, который может выделяться в атмосферу в процессе фотодыхания. Возможно, карбоангидраза необходима для проникновения угольной кислоты через оболочку хлоропласта путем связывания С02 или НСО3 в зависимости от ее формы.

В настоящее время известно более 200 ферментов, активируемых цинком. Дыхательный фермент карбоангидраза содержит 0,31—0,34% цинка. Цинк входит в состав щелочной фосфатазы, малатдегидрогеназы, алкогольдегидрогеназы, глутаматдегидроге-назы и т. д.

Цинксодержащая карбоангидраза обнаружена у овса, петрушки, гороха, в хлоропластах томата. Цинк является компонентом многих, если не всех, дегидрогеназ, требующих присутствия НАД. Вхождение цинка в состав ферментов гликолиза и дыхания, многих НАД и некоторых ФАД-зависимых ферментов дает возможность понять его роль в гликолитическом и дыхательном циклах.

При недостатке цинка в растениях накапливаются редуцирующие сахара и уменьшается содержание сахарозы и крахмала, увеличивается накопление органических кислот, снижается содержание ауксина, нарушается синтез белка. При цинковом голодании происходит накопление небелковых растворимых соединений азота: амидов и аминокислот.

При цинковой недостаточности резко (в 2—3 раза) подавляется деление клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей, гипертрофированию меристематических клеток, угнетению продольного растяжения столбчатых клеток у льна и уменьшению размеров его хлоропластов. В присутствии цинка формируется большое число митохондрий.

К недостатку цинка весьма чувствительны плодовые, особенно цитрусовые, культуры. У яблони, абрикоса, персика, айвы, вишни наблюдаются мелколистность и розеточность, у цитрусовых — пятнистость листьев. У кукурузы при недостатке цинка отмечается побеление, или хлороз, верхних листьев, у томата — мелколист-ность и скручивание листовых пластинок и черешков. Для всех растений при недостатке цинка характерна задержка роста.

Недостаток цинка может проявляться как на кислых сильно-оподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53—76 мг/кг) и черноземных (24—90 мг/кг) почвах, наиболее низкое — в дерново-подзолистых почвах (20—67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn2+. На подвижность цинка в почве в основном влияют величина pH и содержание глинистых минералов. При pH < 6 подвижность Zn2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Цинковые удобрения следует применять, когда содержание цинка в подвижной форме в почвах Нечерноземной зоны менее 0,2—1,0 мг, в Черноземной зоне менее 0,3—2,0 мг/кг почвы.

В качестве цинковых удобрений применяют некоторые отходы промышленности, сернокислый цинк (содержит 22 % цинка) и полимикроудобрения (ПМУ-7) — отходы, получаемые на заводах при производстве цинковых белил. Они содержат 19,6% оксида цинка, 17,4 % силикатного цинка, 21,1% оксида алюминия, а также небольшое количество алюминия, меди и марганца.

Под кукурузу вносят ПМУ-7 (20 кг/га) в почву при посеве в рядки. При некорневых подкормках используют сернокислый цинк (150—200 г на 1 га посевов). Подкормку проводят для большинства культур в период бутонизации или начала цветения растений; плодовые деревья опрыскивают весной по распустившимся листьям (200—500 г сернокислого цинка на 100 л воды с добавлением 0,2—0,5 % гашеной извести для нейтрализации кислотности раствора соли, чтобы избежать ожога листьев). Для опрыскивания 100 кг семян 50—100 г сернокислого цинка растворяют в 4 л воды. Для опудривания семян кукурузы на 100 кг семян расходуют 100 г полимикроудобрения (ПМУ-7).

Применение цинка имеет важное значение на карбонатных черноземах, каштановых, бурых почвах, сероземах. Эффективность цинковых удобрений проявляется на сахарной свекле, кукурузе и особенно на плодовых культурах.

Кобальт. Среднее содержание кобальта в растениях составляет 0,00002 %. Количество его может колебаться от 0,021 до 11,6 мг на 1 кг сухой массы растений.

Значительное количество кобальта содержится в бобовых культурах, где он сосредоточен в клубеньках. Кобальт концентрируется также в генеративных органах, накапливается в пыльце и ускоряет ее прорастание. В растениях около 50 % кобальта находится в ионной форме, около 20 % — в форме кобамидных соединений и в составе витамина В,2. Витамин В,2 синтезируется микроорганизмами и поступает в растения из почвы или у азотфиксирующих растений образуется в клубеньках. В растениях он обнаружен у бобовых, репы, гороха, лука. Около 30 % составляют неидентифи-цированные высокостабильные органические соединения.

Выделена активированная, или коферментная, форма витамина В,2 — 5,6-диметилбензимидазолкобамидный коэнзим. Данный кофермент в сочетании со специфическим белком образует ме-тилмалонилизомеразу, которая катализирует переход пропионата в сукцинат.

Кобальт-метилкорриноид может служить донором метильных групп для метилирования т-РНК. Найдена В,2 — коэнзимзависи-мая рибонуклеотид-редуктаза. Кобамидные коэнзимы участвуют в синтезе ДНК и в клеточном делении. Реакция метилирования имеет значение во многих процессах, в частности в повышении устойчивости растений к некоторым болезням. Например, возбудитель фузариозного вилта вырабатывает токсин — фузариевую кислоту. В результате метилирования образуется нетоксичное ме-тиламидное производное.

Кобальт относится к металлам с переменной валентностью, что определяет высокое значение окислительно-восстановительного потенциала для системы Со3+ — Со2+ в кислой среде и позволяет иону кобальта принимать активное участие в реакциях окисления-восстановления. Однако вхождения кобальта в состав активных групп ферментов дыхательной цепи или фотосинтеза не обнаружено.

В ряде работ установлена связь кобальта с ауксиновым обменом и отмечается, что он способствует растяжению клеточных оболочек.

Кобальт необходим для бобовых культур в отсутствие связанного азота. Потребность в кобальте составляет 1/330 от потребности в молибдене, а уровень потребности в кобальте для азотфиксации составляет лишь 1/10 от потребности для обеспечения роста клубеньков. Кобальт изменяет ультраструктуру азотфиксирующего аппарата, бактероиды активнее функционируют. Капсулы вокруг бактероидов раньше формируются и дольше сохраняются. Кобальт положительно действует на размножение клубеньковых бактерий.

Одной из сторон действия кобальта на азотфиксацию является его участие в биосинтезе леггемоглобина. Опыты показали повышение под действием кобальта активности дегидрогеназ, гид-рогеназы, нитратредуктазы, увеличение содержания хлорофилла, общего гематина и генетически связанного с хлорофиллом витамина Е.

Таким образом, кобальт действует и на азотфиксирующую систему, и на другие физиологические процессы.

В природных условиях, тесно связанных с геохимическими циклами Fe и Мп, кобальт встречается в ионных формах Со2+ и Со3+, возможно образование комплексного аниона Со(ОН)з. В кислой среде кобальт относительно подвижен, но не мигрирует в растворах из-за активной сорбции оксидами Fe, Мп и глинистыми минералами. Кроме того, при низких значениях pH происходит взаимообмен Со2+ и Мп2+, в результате чего образуется Со(ОН)2, который осаждается на поверхности оксидов. С увеличением pH сорбция оксидами марганца резко усиливается.

В почвенных растворах концентрация кобальта изменяется от 0,3 до 87,0мкг/л. На распределение кобальта по профилю почвы влияют органическое вещество почвы и содержание глинистых частиц. Монтмориллонит и иллитовые глины хорошо сорбируют этот элемент. Органические хелаты кобальта легкоподвижны, хорошо мигрируют в почве и легкодоступны растениям.

Кобальт необходим и пшенице. Имеются многочисленные данные о положительном действии данного элемента на урожай многих растений, которое в первую очередь проявляется на почвах, хорошо обеспеченных всеми остальными элементами минерального питания, с реакцией, близкой к нейтральной. Перспективно применение кобальтсодержащих удобрений на черноземах, окультуренных дерново-подзолистых почвах. Эффективно действие таких удобрений на черноземных почвах под зерновые бобовые и виноград. Очень важно применение кобальта для повышения диетической ценности продукции в результате увеличения его содержания в растениях.

При содержании кобальта в кормах менее 0,07 мг на 1 кг сухого сена животные заболевают акобальтозом. Поэтому необходимо обязательно применять кобальтсодержащие удобрения на лугах и пастбищах в районах кобальтовой недостаточности.

Применение кобальтсодержащих удобрений улучшает качество урожая не только вследствие большего накопления растениями данного элемента. Например, в опытах на дерново-подзолистых почвах под действием кобальта урожай корней сахарной свеклы, по данным 44 опытов, повышался в среднем на 3,5 т, а сахаристость — на 0,8 %, в результате чего сбор сахара увеличился на 1 т/га.

Прибавка урожая люпина на дерново-подзолистых почвах при применении кобальтовых удобрений составила 0,12 т/га семян и

6.5 т/га зеленой массы (при урожае на контроле 32,5 т/га).

Кобальтсодержащие удобрения эффективны при количестве

этого элемента в почвах в Нечерноземной зоне 1,0—1,1 мг, в Черноземной зоне 0,6—2,0мг/кг почвы. Однако для выращивания полноценных кормов для скота и пищевых продуктов необходимо применять кобальтовые удобрения при содержании кобальта 2,0—

2.5 мг/кг почвы. В почву кобальт можно вносить в количестве 200—400 г/га в расчете на элемент. Для некорневых подкормок и предпосевной обработки семян применяют 0,01—0,10%-ные растворы сернокислого кобальта.

Селен. Пока еще он не относится к необходимым для растений микроэлементам, но он жизненно необходим для теплокровных животных. При его дефиците установлено возникновение как специфических микроэлементозов, так и заболеваний другой этиологии. К заболеваниям человека, вызванным недостатком селена, в первую очередь относят кардиомиопатию — болезнь Кешана, онкологические заболевания, а к заболеваниям сельскохозяйственных животных — беломышечную дистрофию. Недостаток селена в пище и питьевой воде является патогенным фактором при некротической дегенерации печени, поражении поджелудочной железы и кишечника, экссудативном диатезе. Селен способен противостоять химическому мутагенезу, инициируемому токсичными дозами тяжелых металлов. При дефиците селена происходит снижение иммунитета и умственного развития у детей. В последние годы установлено влияние селена на обмен йода, активность щитовидной железы.

Суточная потребность человека в селене составляет 40— 220 мкг, причем варьирование этой величины зависит от фенотипических особенностей организма, формы поступающего селена, содержания в пище белков, витаминов С и Е и в меньшей степени от возраста и пола.

Наиболее перспективный путь коррекции селенодефицита — получение продукции растениеводства, обогащенной селеном. При этом важным фактором являются неодинаковые возможности различных растений накапливать селен. Кроме того, следует учитывать, что селен распределяется по органам растений неравномерно. Например, стебли и листья пшеницы содержат примерно в 2—3 раза меньше селена по сравнению с зерном и корнями. В целом же концентрация селена в растениях часто варьирует так же широко, как и в почвах, — от 10 до 1100 мкг в 1 кг воздушно-сухой массы.

Во многих странах Европы и Азии проведено крупномасштабное картирование содержания селена в почвах, водах, растениях и предпринимаются меры по регулированию содержания селена в пищевых продуктах человека и рационах животных. В России были выявлены обширные биогеохимические территории с различным уровнем недостатка селена в Нечерноземной зоне, на Южном Урале и в Забайкалье. Биогеохимическая провинция с избытком селена обнаружена в Уюгской и Барыкской долинах Тувы.

Агроэкологическое обследование ряда областей Нечерноземной зоны европейской части России на содержание селена позволило заключить, что концентрации его были невысокими — 61 — 729 мкг/кг. Наименьшее количество селена (до 169мкг/кг) характерно для подзолистых и дерново-подзолистых почв, а также почв на песчаных почвообразующих породах. Максимальные концентрации селена (от 521 до 727 мкг/кг) обнаружены в торфянистых, оглеенных, обогащенных оксидами железа и образованных на карбонатных породах почвах. В большинстве случаев исследованные почвы содержат не более 400 мкг Se/кг почвы, и их следует отнести к дефицитным по содержанию этого элемента.

Анализ содержания селена в растениях различных семейств показал, что среднее содержание его в большинстве видов не превышало 100 мкг/кг (табл. 87).

87. Содержание селена в растениях Нечерноземной зоны, мкг/кг сухой массы СемействоЧисло ВИДОВАмплитудаСредневзвешенноезначение Мятликовые1412-409102 Бобовые168-356116 Сельдерейные810-11662 Капустные610-12168 Астровые461-34891

Максимальные концентрации селена наблюдаются в растениях семейств бобовые, Мятликовые и астровые, наименьшие — семейства сельдерейные.

В странах, где распространены болезни Кешана и Кашина— Бека (Китай), проводят обогащение селеном продуктов питания, например муки. Другим приемом обогащения является завоз в дефицитный по селену регион продуктов, производимых на почвах с высоким уровнем содержания селена. В Скандинавии, почвы которой, особенно на севере, содержат мало селена, в последние 20 лет используют удобрение селеном как зерновых культур, так и кормовых трав.

В почве существуют сложные взаимоотношения селена с другими элементами минерального питания растений. Установлено, например, что внесение Со, Zn, Ni усиливает микробиологическое образование летучих соединений Se, в то время как удобрение В и Мп не влияет на эти процессы, а поступление Mo, Hg, Сг и РЬ ингибирует трансформацию соединений Se в летучие формы.

На протяжении нескольких лет в лаборатории микроэлементов МСХА ведут исследования по созданию сельскохозяйственной продукции, обогащенной селеном. В серии опытов изучено влияние внесенного в почву биселенита натрия на урожай, его качество и содержание Se в растениях овощных культур, пшеницы, рапса и люпина (табл. 88).

88. Содержание селена в некоторых сельскохозяйственных культурах при удобренииих биселенитом натрия ДозаSe,мкг/кгпочвыУкроп,надземная частьРедис,корнеплодыДозаSe,мкг/кгпочвыПетрушка (тяжелосуглинистая почва)ДозаSe,мкг/кгпочвыСалат,листьяЧеснок легко-суглинистаяпочватяжелосуглинистаяпочвалегко-суглинистаяпочватяжело-суглинистаяпочванадземнаячастькорнитяжелосуглинистая почва 06111318756019367072303 271314197225467233170 25444278Т0540250242348125236 3892982912627336234321421 125638264156468250380930250600469 9552895612067336677355135 2501566256300368500380996100010211695 г0,970,500,980,49г0,840,91г0,951,00 Примечание. Над чертой — мкг/кг сухой массы; под чертой — % от контроля.

Изучаемые в опытах овощные культуры без внесения селена накапливали его в сравнительно небольших количествах — 56— 303 мг/кг сухой массы. Внесение биселенита натрия в возрастающих количествах (с 25 до 500 мкг Se/кг почвы) приводило к увеличению содержания селена в растениях укропа в 2,5—15,7 раза, редиса (корнеплоды) — в 4 раза, петрушки — в 2,4—3,8 (в корнях) и в 3,5—10,0 (в надземной части) раз. С увеличением дозы биселенита натрия с 50 до 1000 мкг Se/кг почвы содержание селена в листовом салате выросло в 10 раз, в яровом чесноке — в 3,7—16,0 раз, в люпине желтом — в 3—11 (зеленая масса) и 6—25 (зерно) раз. Некорневая подкормка люпина желтого 0,0005%- и 0,002%-ным раствором биселенита натрия в полевых опытах повышала содержание Se в зеленой массе в 4—9, в зерне в 4—8 раз.

Таким образом, в условиях опытов на дерново-подзолистых почвах применение селена в дозах 25—1000 мкг/кг почвы позволяет без снижения урожая значительно обогатить сельскохозяйственные культуры селеном. Из испытываемых культур наиболее выраженным концентратором селена оказался чеснок.

Для обогащения продукции растениеводства селеном в мировой практике используют внесение селенсодержащих материалов (селенаты и селениты) в почву, некорневые подкормки и обработку семян. Наиболее эффективный и часто используемый метод — внесение селена в почву совместно с макроудобрениями.

Литий. Он является биологически важным элементом в жизнедеятельности растений и может действовать как активатор и как ингибитор различных процессов. Литий оказывает влияние на содержание и гетерогенный состав белков и нуклеиновых кислот, ферментативную активность различных энзимов, связанных с белково-нуклеиновым обменом.

Имеются сведения о положительной роли лития в углеводном обмене растений. Он повышает интенсивность фотосинтеза в репродуктивный период, скорость фотодыхания и зерновую продуктивность озимой пшеницы. Отмечена специфическая роль лития в обмене алкалоидов. Установлено положительное влияние лития на накопление в растениях аскорбиновой кислоты. Кроме того, замечено его положительное действие в борьбе с вирусными инфекциями.

Необходимость лития для организма человека и животных доказана. Эффективность лития при различных заболеваниях зависит от его влияния на нейрорефлекторную деятельность, а также от его адренолитического, норадренолитического, антигистамин-ного, антисеротонинового действия и регулирующего влияния на гормональную деятельность эндокринных желез, особенно коркового слоя надпочечников. При гипертонии различного происхождения литий оказывает антистрессовое и седативное действие. Положительное влияние лития при некоторых патологических процессах во многом определяется его стимулирующим действием на иммунную систему и на неспецифические защитные реакции организма.

При избытке в организме человека лития он может оказывать и токсичное действие. При этом симптомы отравления указывают на нейротоксичное действие лития. Повышенное содержание лития в кормах приводит к декальцинации костной ткани и морфогенным изменениям у животных. Перспективна коррекция поступления этого элемента в организм человека и животных с помощью сельскохозяйственных растений, обогащенных литием.

В настоящее время не существует единого мнения о необходимости лития для сельскохозяйственных растений: реакция их зависит от условий обитания, возраста и систематического положения. Отмечено благоприятное действие лития на ряд культур: табак, хлопчатник, сахарную свеклу, томат, сладкий перец, картофель. С другой стороны, применяя Li как микроудобрение, следует учитывать возможную его токсичность. Избыток солей лития вызывает морфологические изменения у растений — нарушение митоза. Очень чувствительны к литию кипарисовые, крестоцветные, жимолостные, лилейные, ирисовые, злаковые.

Поступление лития в растения зависит прежде всего от содержания его подвижных форм в почве. Содержание Li в почвах увеличивается с севера на юг — от 10—25 мг/кг (дерново-подзолистые почвы) до 65—90 мг/кг (обыкновенные черноземы). Количество элемента зависит от содержания Li в почвообразующих породах, а также от гранулометрического состава почвы (в тяжелых почвах Li больше), от количества гумуса в ней и степени выщелоченное™. По профилю почвы концентрация обменного Li снижается, а в горизонтах с максимальным накоплением карбонатов кальция он наименее подвижен. Засоление почвы также снижает подвижность лития. Кроме того, существует взаимосвязь между содержанием лития и калия в почве.

Содержание лития в растениях значительно варьирует в зависимости от систематической принадлежности и условий питания. Среди растений выделяются концентрирующие литий в любых условиях и предпочитающие его повышенное содержание в почвах — пасленовые, фиалковые, лютиковые. Содержание в них лития около 60 мг/кг сухого вещества. Мальвовые и маревые накапливают Li только при высоком содержании его в почве. Индифферентные к литию растения (мята длиннолистная, верблюжья колючка) содержат его 20—45 мг/кг сухого вещества. Бобовые потребляют литий в небольших количествах (4,8—7,9 мг/кг сухого вещества), но не избегают обогащенных им мест. Злаковые и губоцветные, наоборот, потребляют литий в незначительных количествах и избегают мест с высоким содержанием его в почве. Существенное влияние на накопление лития в растениях оказывают почвенно-климатические условия. Распределение лития по органам растений имеет следующую закономерность: листья > корни > стебли > плоды. В связи с этим источником Li в пище могут служить листовые овощи и корнеплоды.

Взаимодействие лития при поступлении в растения с другими элементами может быть очень разнообразным, что оказывает влияние на элементный состав растения в целом. Применение лития в качестве микроудобрения под различные культуры дает в основном положительный результат. Многое зависит от способа применения и доз. Как правило, используют различные соли лития (хлористую, сернокислую, углекислую). Для предпосевного замачивания (увлажнения) семян (клубней картофеля) применяют растворы лития от 0,001 до 0,05 % из расчета на элемент в зависимости от культуры. Для некорневого питания используют растворы Li от 0,005 %-ного (виноград, картофель) до 0,1 %-ного (табак). В почву литий вносят в пределах 0,1—40,0 мг/кг почвы в зависимости от культуры и используемой соли.

Перспективы использования микроудобрений. Учитывая важную роль микроэлементов в повышении продуктивности сельскохозяйственных культур и всевозрастающую потребность в них, необходимо поставить задачу обеспечения сельскохозяйственного производства перспективными формами микроудобрений, позволяющими наиболее эффективно использовать эти нужные растениям элементы питания.

Результаты многочисленных исследований по изучению перспективных видов и форм микроудобрений свидетельствуют о целесообразности производства и применения обогащенных микроэлементами удобрений, в том числе комплексных. Испытания опытных и опытно-промышленных партий основных удобрений с микроэлементами в производственных условиях показали, что только, например, за счет бора в нитроаммофоске, внесенной на выщелоченных черноземах и дерново-подзолистых почвах, получают следующие дополнительные прибавки к урожаю: корней сахарной свеклы 3—4 т/га, семян капусты 0,23—0,29, семян гороха 0,21-0,37 т/га.

Внесение на дерново-подзолистых почвах молибдена в составе суперфосфата обеспечивает дополнительный сбор 0,5—0,6 т/га сена бобовых трав. В условиях резкой недостаточности меди (осушенные торфяно-болотные почвы низинного типа) на фоне основных удобрений колосовые почти не дают зерна, в то время как внесение обогащенного медью хлористого калия позволяет получить урожай зерна ячменя 2,5—3,0 т/га, повысить на 15—18 % урожай трав, на 20 % урожай овощей.

По прогнозам, потребность сельского хозяйства в микроэлементах должна обеспечиваться на 60—70 % микроэлементами в составе основных удобрений и на 30—40 % за счет технических солей, применяемых для некорневой подкормки и предпосевной обработки семян.

Требование сбалансированного питания растений всеми питательными элементами для обеспечения максимальных сборов высококачественной сельскохозяйственной продукции не только не исключает, но и наоборот, резко усугубляет необходимость строго дифференцированного подхода к применению микроудобрений с учетом обеспеченности почв доступными формами микроэлементов, других почвенно-климатических факторов, биологических особенностей и особенностей питания культур.

Применение широкого набора микроэлементов в сочетании с макроэлементами в составе комплексных удобрений или питательных смесей должно быть весьма ограничено и допустимо лишь в условиях абсолютного недостатка питательных веществ при выращивании растений на малоплодоролиых песчаных и супесчаных почвах, в условиях гидропоники пли защищенного грунта с использованием инертных малобуферных сред, в садоводстве и декоративном цветоводстве.

Однако и в этом случае необходимо строгое научное обоснование целесообразности совместного применения комплекса макро-и микроэлементов.

Особое внимание следует обратить на те направления исследований в области агрохимии микроэлементов, которые имеют пер-

воочередное значение для практического использования в земледелии микроэлементов, обеспечения наиболее высоких их агрохимической и экономической эффективности. К ним относятся:

разработка надежных методов прогнозирования эффективности микроудобрений на основе агрохимического анализа почв на содержание доступных форм микроэлементов и растительной диагностики;

изучение действия перспективных форм микроудобрений на величину и качество урожая важнейших сельскохозяйственных культур в сети географических полевых опытов, проводимых по единым методике и программе, на фоне возрастающих доз основных (NPK) минеральных удобрений;

исследование баланса макро- и микроэлементов в длительных полевых опытах с удобрениями в севообороте в различных почвенно-климатических зонах страны, в том числе при использовании необходимых микроудобрений в качестве составной части системы удобрения;

изучение взаимодействия макро- и микроэлементов в процессах питания и обмена веществ растений, влияния микроэлементов (микроудобрений) на размеры использования и продуктивность усвоения основных элементов питания из почвы и удобрений.

Исследования по первому из указанных направлений включают установление предельных величин содержания микроэлементов в почвах и растениях, разработку более совершенных методов определения доступных растениям форм микроэлементов в почвах, установление научно обоснованных градаций обеспеченности почв микроэлементами для отдельных почвенно-климатических зон, районов страны с учетом особенностей культур, типа, гранулометрического состава и других свойств почвы, уровня применения органических и минеральных удобрений и приемов водо-регулирования.

Наряду с изучением эффективности перспективных форм, содержащих микроэлементы комплексных удобрений в течение длительного времени, будет иметь важное значение разработка приемов наиболее рационального использования отходов промышленного производства, содержащих микроэлементы, а также поиск сырья, пригодного для производства микроудобрений.

Изучение баланса макро- и микроэлементов в длительных полевых опытах с севооборотами должно сопровождаться исследованием влияния систематического применения высоких доз органических и минеральных удобрений, приемов химической мелиорации и химических средств защиты растений на содержание в почве и доступность растениям микроэлементов из почвы и м и кроудобрен и й.

Пристального внимания заслуживает исследование ранее не изучавшихся с агрономической точки зрения микроэлементов (йода, лития, алюминия, ванадия, титана, селена, рубидия, брома и фтора), а также определение возможного негативного действия таких микроэлементов, как медь, фтор, мышьяк, хром, свинец, кадмий, никель, в связи с техногенным загрязнением и охраной окружающей среды.

На современном этапе развития сельскохозяйственного производства необходимо учитывать не только острый недостаток микроэлементов с явно выраженными признаками и большими потерями урожаев, но и скрытый недостаток без внешнего проявления признаков, приводящий к снижению урожая и его качества. В конечном урожае сельскохозяйственной продукции, его количестве и качестве суммировано громадное число постоянно изменяющихся факторов, воздействовавших на растения в период вегетации.

Долгое время рекомендации по внесению удобрений основывались на почвенных исследованиях, содержании элементов в растениях, ориентировочных таблицах, т. е. с учетом незначительного количества факторов. С использованием для планирования применения минеральных удобрений современной вычислительной техники появилась перспектива учета всех существенных факторов, влияющих на урожай растений и его качество, с одновременным учетом охраны окружающей среды. Например, в ряде стран применятся программа ЭВМ для внесения микроудобрений.

При внесении микроэлементов учитывают многочисленные факторы, относящиеся к растениям, почвенные факторы, а также факторы, относящиеся к внесению удобрений или возделыванию культуры, и др. На основании системы оценки всех условий определяют влияние их совокупности и принимают решения по внесению удобрений.

Для успешного совершенствования сельскохозяйственного производства очень важна разработка объективно обоснованных рекомендаций по рациональному применению макро- и микроудобрений.

Несомненно, что перечисленные направления в развитии исследований по агрохимии микроэлементов не полностью охватывают все вопросы, связанные с проблемой микроэлементов в земледелии. Однако они имеют первоочередное значение в системе исследований, осуществляемых в нашей стране с целью обеспечения наиболее рационального применения микроудобрений.

Контрольные вопросы и задания

1. Каково содержание микроэлементов в различных почвах? 2. Какие микроэлементы наиболее широко применяют в сельском хозяйстве и в каких условиях они дают наибольший эффект? 3. Расскажите о физиологической роли бора и содержании его в растениях. 4. На каких почвах и под какие культуры прежде всего необходимо внесение борных удобрений? 5. Назовите формы борных удобрений, дозы и способы их внесения. 6. Каковы физиологическая роль кобальта и содержание его в растениях? 7. На каких почвах и под какие культуры прежде всего необходимо внесение кобальтовых удобрений? 8. Назовите формы кобальтовых удобрений, дозы и способы их внесения. 9. Каковы физиологическая роль цинка и содержание его в растениях? 10. На каких почвах и под какие культуры прежде всего необходимо внесение цинковых удобрений? 11. Назовите формы цинковых удобрений, дозы и способы их внесения. 12. Расскажите о физиологической роли меди и содержании ее в растениях. 13. На каких почвах и под какие культуры прежде всего необходимо внесение медных удобрений? 14. Назовите формы медных удобрений, дозы и способы их внесения. 15. Каковы физиологическая роль молибдена и содержание его в растениях? 16. На каких почвах и под какие культуры прежде всего необходимо внесение молибденовых удобрений? 17. Назовите формы молибденовых удобрений и способы их внесения. 18. Расскажите о физиологической роли марганца и содержании его в растениях. 19. На каких почвах и под какие культуры прежде всего необходимо внесение марганцевых удобрений? 20. Назовите формы марганцевых удобрений, дозы и способы их внесения.