Каждая клетка помнит о своем происхождении

We use cookies. Read the Privacy and Cookie Policy

Каждая клетка помнит о своем происхождении

Конраду Уоддингтону мы обязаны не только метафорой эпигенетического ландшафта. В 1942 году он стал, как принято считать, крестным отцом понятия «эпигенетика». Слово «эпигенотип» он впервые употребил уже в 1939-м — в своем «Введении в современную генетику». Так или иначе, британский ученый не изобрел совершенно новое слово, он составил его из двух уже существовавших терминов «генетика» и «эпигенез».

Идея эпигенеза была известна уже в Древней Греции. По этой теории, любой организм развивается из крошечной единицы первичной материи, зачатой родителями. Немецкий натуралист Иоганн Фридрих Блуменбах (1752–1840), один из учителей Александра фон Гумбольдта, был известным приверженцем этой теории. Как мы сегодня знаем, в основе своей она верна. Однако это учение не сразу вытеснило господствовавший тогда преформизм, который, оглядываясь назад, придется признать довольно абсурдным. Преформисты верили, что организм как целое уже содержится либо в яйцеклетке матери, либо в сперматозоиде отца — только он крошечного размера. Ему остается развиться и увеличиться в размерах.

Блуменбах называл эпигенез также «эпигенетической моделью». Разумеется, Уоддингтон не случайно опирался именно на это понятие. В начале XX века ученые уже гораздо лучше представляли себе физиологические процессы, управляющие физическими и психическими функциями живого существа. Они знали о клеточных ядрах, хромосомах, генах и об основных механизмах наследования. Немецкий биолог Ханс Шпеман (1869–1941) даже выдвинул тезис о том, что в процессе биологического развития клетки дезактивируют все больше носителей информации и таким образом все больше дифференцируются. Однако еще не было известно, как выглядят гены и что у них есть специальные переключатели.

Вплоть до 1980-х годов ученые совершенно в духе Уоддингтона понимали под эпигенетикой прежде всего те процессы, которые оказывают влияние на геном и превращают оплодотворенную яйцеклетку во взрослый организм. Они изучали факторы, сообщающие клетке, откуда она вышла и к чему должна прийти. Сегодня этот термин понимается шире: эпигенетика занимается всеми изменениями функции гена, не явившимися следствием изменений в последовательности ДНК, но передающимися по наследству дочерним клеткам.

Впрочем, руководящая идея о существовании еще одного носителя информации помимо генов, некоего второго кода, — куда старше, чем теория Уоддингтона. Гамбургский биолог Эмиль Хайц в 1928 году обнаружил у мохообразных гетерохроматин — одну из важнейших эпигенетических структур, способную отключать целые отрезки ДНК. В последующие годы он размышлял над возможной целью существования уплотненных отрезков наследственного вещества, структуру которых (нить ДНК и белковый барабан) он еще не мог наблюдать из-за ограниченных технических возможностей. Уже в 1932 году он писал: «Принцип работы генов, вероятно, напрямую зависит от структуры субстрата, в который он вложен».

На эту цитату мое внимание обратил один из самых известных немецких эпигенетиков — Гюнтер Ройтер из Университета Галле. Он подчеркнул, что современные ученые вряд ли смогли бы точнее описать искусство упаковки гистонов, чем это сделал Хайц.

Итак, эпигенетика начинается с изучения процессов, способствующих развитию многоклеточного организма из оплодотворенной яйцеклетки. И для этого есть веские основания. Ибо, как утверждает эссенский генетик Бернхард Хорстхемке, «с момента создания первого многоклеточного существа — и не позднее — природе понадобились эпигенетические системы наследования. Если быть совсем точным, это случилось уже после появления первых одноклеточных, которые должны меняться в течение всей жизни».

Например, двуполые одноклеточные дрожжевые грибки должны изменить свой второй код, чтобы превратиться в мужскую или женскую клетку, прежде чем они смогут размножаться, соединяясь с другими особями. В конечном счете именно изобретение второго кода повлекло за собой появление высокоорганизованных форм жизни.

Вероятно, начало этому процессу положила борьба некоторых бактерий против враждебных вирусов-агрессоров. Последние стремились ввести свой собственный геном в ДНК бактерий. Но те обнаружили его, поскольку модель метилирования ДНК была необычной, так объясняет генетик Йорн Вальтер из Саарбрюккена. «Затем бактерии, вероятно, научились управлять некоторыми функциями через метилирование ДНК и целенаправленно отключать чужие гены, которые они не могли уничтожить», — добавляет ученый.

Впоследствии эволюция делала эпигенетические механизмы все более многослойными. Возникли различные формы гистоновой модификации и РНК-интерференция. «Чем сложнее становились живые существа, тем больше появлялось эпигенетических уровней регуляции», — рассказывает Вальтер. Однако за этот прогресс живым существам пришлось расплачиваться определенными рисками. «Чем более дифференцированную регуляцию осуществляют клетки, тем больше ошибок они могут сделать, — объясняет генетик. — А вследствие этого возрастает вероятность развития таких болезней, как, например, рак».