Экологическое строительство

Тому, кто хочет потягаться с изменением климата, придется заняться строительной деятельностью человека. Энергопотребление и выбросы CO2 наших построек выше, чем в промышленности и транспорте вместе взятых. В высокоразвитых странах около 40 % выбросов парниковых газов приходится на здания. Из них менее 10 % — на стройматериалы, а более 90 % — результат эксплуатации. В этом состоит огромный потенциал экономии. Исследования, а также опыт эксплуатации уже существующих зданий говорят о том, что потребление энергии в данном сегменте можно понизить на 50–80 %. В сочетании с возобновляемыми источниками выбросы можно свести к нулю: дома становятся электростанциями, подающими избыточное электричество в сеть. Если в Европе с учетом демографических перемен преимущество отдается экологической модернизации старых зданий, в других регионах мира как из-под земли возникают новые города-милионники. Крупные города стремительно расширяются; в кратчайшие сроки застраиваются целые городские кварталы. Ввиду глобального урбанистического тренда, с учетом изменения климата и ресурсопотребления вопрос ставится: как строить эти города. Это касается не только инфраструктуры — транспорта, энерго- и водоснабжения, — но и зданий, в которых живут и работают люди.

Сегодня повсюду можно встретить инновационные примеры зеленых зданий (green buildings), которые обходятся собственной энергией и в которых минимизировано потребление воды.

Образцовым примером экологического строительства является Техническая ратуша (Council House II) Мельбурна. По сравнению со старой ратушей она потребляет на 82 % меньше энергии, на 72 % меньше свежей воды и выделяет на 13 % меньше парниковых газов[265].

Второй пилотный проект — Перл Ривер Тауэр (Pearl River Tower) в Гуанчжоу (ранее Кантон, Китай), небоскреб высотой 310 м, имеющий 210 000 м2 полезной площади, который был введен в эксплуатацию в 2012 г. после шестилетнего строительства. Изначально он был задуман как высотный дом с нулевыми выбросами, однако в ходе строительства по экономическим причинам, а также по соображениям законности и техники безопасности от некоторых пунктов амбициозного плана пришлось отказаться. Тем не менее образцово-показательный проект экологического дизайна был реализован. Конструкция базируется на четырех взаимосвязанных принципах: максимальное сокращение потребления энергии и воды, в том числе за счет внутренней вентиляции и фасада, окон с двойными и тройными стеклами, комбинации пассивной и активной вентиляции, а также системы эксплуатации здания, реагирующей на перемену освещения и температуры; абсорбция поступающей извне энергии, прежде всего при помощи интегрированных в фасад фотогальванических элементов, а также ветротурбин с горизонтальной осью вращения; повторное использование циркулирующей по зданию энергии и воды, например, для охлаждения или нагревания поступающего с улицы воздуха; производство необходимой дополнительной энергии при помощи микротурбин, эффективность которых достигает 80 % и которые могут работать на различном топливе (биогаз, метан, дизель). Турбины охлаждаются воздухом, возникающее при этом тепло может быть использовано для охлаждения или отопления. От этого четвертого компонента из-за сопротивления местного энергопроизводителя пришлось отказаться, он оказался не готов к нерегулярному приему излишков энергии — доказательство того, насколько для распространения возобновляемых источников энергии важны вопросы организации[266].

Третье, о чем необходимо вкратце сказать, это небоскреб с садами и парками «Башня — городской лес» (Urban Forest Tower), спроектированная пекинской студией MAD для центра Чунцина: комплекс на грани фантастики из 70 этажей разной формы, смещенных относительно центральной оси, складывающихся в башню высотой 385 м. В здании множество садов, деревьев, скверов: прямо-таки вертикальный лес, призванный компенсировать потери пейзажа в ходе урбанизации. Если речь, как утверждают проектировщики, идет о том, чтобы интегрировать природу в небоскреб, то это насквозь искусственная природа, обустроенная человеком. Но вместе с тем и захватывающий пример возможностей зеленой архитектуры в эпоху Гипермодерна, тем более что здание напичкано всем, что могут предложить экологические технологии[267].

То, что современная солярная архитектура сулит перспективы и при перестройке старых зданий, демонстрирует цюрихский пример. В ходе ремонта двух высотных домов на 170 квартир фасады были оборудованы солнечными модулями. Таким образом, появилась солнечная батарея на 98 кВт, которая в состоянии если и не полностью, то все-таки на треть удовлетворить потребность в электричестве 500 жителей. Благодаря использованию тонкопленочных модулей, которые в состоянии преобразовывать солнечный свет в электричество в отсутствие прямого солнечного излучения, в производстве электричества принимают участие и северные фасады[268].

Новые материалы, технологии и конструктивные методы дают возможность сочетать в архитектуре функциональность, эстетику и экологию. Хрестоматийный принцип «Баухауса» «form follows function» (форма следует за функцией) сменяется новым — «form follows energy» (форма следует за энергией). Главная изюминка данной концепции в том, что фасады и крыши становятся плоскостями, улавливающими энергию. С учетом повышающейся эффективности и понижающейся стоимости солнечных батарей речь в первую очередь идет не о минимизации энергетических потерь за счет компактности здания, а скорее о том, как добиться максимального извлечения энергии. Для этого форма постройки должна отвечать требованиям наиболее полного использования солярного и геотермального потенциала. Это изменит язык архитектурных форм XXI в., которые будут в большей степени учитывать местные условия и климатические особенности: в Мадриде нужно строить иначе, чем в Берлине или Хельсинки[269].

Экологическое строительство соединяет различные компоненты в целостную продуманную систему: фасады зданий производят солнечное электричество и регулируют температуру, на крышах устанавливаются ветрогенераторы с горизонтальной осью вращения, децентрализованные системы на базе комбинированного производства электроэнергии и тепла удовлетворяют остаточную потребность в энергии, избыточное тепло аккумулируется в земле, встроенные в наружные конструкции здания вертикальные сады служат тепловым буфером и улучшают внутренний климат, очищаемые в пределах замкнутых циклов сточные воды сокращают потребление свежей воды, климатизация и освещение помещений регулируются в зависимости от времени суток и расположения здания, все использованные при строительстве материалы подлежат вторичной переработке. Это не утопия, а уровень современных технологий. Но без государственной поддержки потребуются еще десятилетия, прежде чем подобную передовую технику можно будет внедрить повсеместно, что в значительной степени зависит от длительных циклов эксплуатации и сноса зданий. Соответственно, в строительном секторе невелика и скорость внедрения инноваций. А ведь именно старые постройки обладают невероятным потенциалом экономии тепла[270]. Вместе с тем экологическая санация зданий является малозатратной программой для создания рабочих мест, которая может принести большую пользу местному населению. Теплоизоляция, обновление отопительного оборудования, установка водяных насосов — все это ручной труд, который нельзя перевести в страны с низкими заработными платами. Пока экономическая привлекательность проведения санации старых зданий невелика. Подешевевших займов Банка развития для этого, по-видимому, недостаточно. В энергетике стимулом для структурных перемен стал Закон о возобновляемых источниках энергии, гарантирующий сбыт. Для экологического переустройства городов аналогичный инструмент пока не найден. Поэтому Фонд им. Генриха Бёлля опубликовал исследование о том, как можно при помощи начального финансирования мобилизовать масштабные частные инвестиции. Многообещающей видится система, предусматривающая премию за серьезные инвестиции в экономию энергии. Финансирование по аналогии с Законом о возобновляемых источниках энергии должно производиться из отчислений за использование ископаемых энергоносителей (нефти, газа)[271].

Технологии и финансирование — два главных фактора на пути к углеродно нейтральному городу. Но в конечном счете экологическая строительная культура зависит от субъектов, взаимодействие которых формирует облик города, — инвесторов, архитекторов, строителей, гражданских инициатив, планировщиков и политиков, определяющих условия работы на местах. Долгое время энергоэффективность и устойчивость не играли большой роли в строительных профессиях. Все изменилось. Сегодня уже считается хорошим тоном разбираться в энергобалансе и экологических стройматериалах. В 2009 г. Союз немецких архитекторов передал федеральному министру строительства подписанный архитекторами, инженерами, специалистами по ландшафтному дизайну манифест «Это нужно миру», который представляет собой своего рода перечень добровольных обязательств специалистов по устойчивому планированию и строительству[272]. Речь при этом идет не просто об оптимизации того или иного строительного объекта, но об изменении городских ландшафтов и перестройке инфраструктуры, требующих дальновидной политики, экономической привлекательности, законодательных актов и ясных приоритетов в сфере градостроительства.