4.5. Морфогенетические зародыши в биологических системах
4.5. Морфогенетические зародыши в биологических системах
На клеточном уровне зародыши морфогенетических трансформаций могут быть морфическими единицами низшего уровня в клетках, которые присутствуют как в начале, так и в конце процесса клеточной дифференциации. Возможные морфогенетические зародыши этих трансформаций сразу не очевидны: это могут быть органеллы, макромолекулярные агрегаты, цитоплазматические или мембранные структуры или клеточные ядра. Во многих случаях ядра могут играть эту роль. Но поскольку в одном и том же организме может производиться так много различных типов дифференцированных клеток, если ядра должны действовать как морфогенетические зародыши, они должны быть способны создавать различные модели организации в клетках различных типов: дифференциации клетки должна предшествовать дифференциация ее ядра, благодаря изменениям в его мембране, или в расположении хромосом, или в связях между белками и нуклеиновыми кислотами в хромосомах, или в нуклеолях, или в других компонентах. Такие изменения могут быть вызваны непосредственно или опосредованно, через воздействие морфогенетического поля высшего уровня — поля дифференцирующейся ткани. Действительно, имеется немало данных о том, что многим типам клеточной дифференциации предшествуют изменения ядер. Выдвигаемое здесь предположение отличается от обычной интерпретации таких изменений тем, что в нем эти изменения рассматриваются не как просто химические, обусловленные образованием специальных видов РНК-мессенджера (предвестник), но, в дополнение к этому, как морфогенетические: модифицированные ядра могут служить как зародыши, с которыми ассоциируются (связываются) специфические морфогенетические поля дифференцированных клеток.[121]
Существует по крайней мере один процесс клеточного морфогенеза, в котором ядро не может служить морфогенетическим зародышем: это деление ядер. Ядро теряет свою идентичность как отдельная структура, когда ядерная мембрана разрушается и исчезает.[122] Двойные, сильно скрученные хромосомы выстраиваются в линии в экваториальной области митотического веретена,[123] и затем полный набор хромосом движется к каждому из полюсов веретена. Затем вокруг каждого набора хромосом нарастает новая ядерная мембрана, в результате чего образуются дочерние ядра. Морфогенетическими зародышами для этих процессов должны быть экстра-нуклеарные (внеядерные) структуры или органеллы, и таких зародышей должно быть два.[124]
Развитие тканей и органов обычно включает как трансформативные, так и агрегативные изменения. В этих морфогенезах морфогенетическими зародышами должны быть клетки или группы клеток, которые присутствуют и как часть конечной формы, и в начале морфогенетического процесса; это не могут быть те специализированные клетки, которые появляются только после того, как процесс начался. Таким образом, здесь морфогенетическими зародышами, вероятно, могут быть только относительно слабо специализированные клетки, которые изменяются мало. В высших растениях такие клетки присутствуют, например в апикальных зонах меристем[125] или точек роста.[126] У побегов стимул к цветению трансформирует меристемы таким образом, что они порождают, скорее, цветы, нежели листья и другие вегетативные структуры; апикальные зоны, должным образом модифицированные стимулом к цветению, могут быть морфогенетическими зародышами для такой трансформации. В эмбрионах животных эмбриологами уже было обнаружено множество «организующих центров», которые играют ключевую роль в развитии тканей и органов; одним из примеров является апикальный гребень эктодермы[127] на верхушках развивающихся зачатков конечностей.[128] Эти «организующие центры» вполне могут быть зародышами, с которыми связываются морфогенетические поля более высоких уровней.
Хотя как в химии, так и в биологии для описания явлений можно предложить морфогенетические термины, а иногда и идентифицировать соответствующие структуры, все же многое остается неясным, особенно происхождение индивидуальной формы каждого морфогенетического поля, а также способа его соединения со своим зародышем. Рассмотрение этих проблем в следующей главе приводит нас к более сложной гипотезе формативной причинности, которую, хотя она и выглядит удивительно и непривычно, понять оказывается легче.