Глава 18. Эволютика и кибернетика

We use cookies. Read the Privacy and Cookie Policy

18.1 Кибернетика как наука об управлении сложными системами

Кибернетика явилась первой научной дисциплиной, связанной с изучением образования порядка из хаоса и функционирования так называемых сложных систем, т. е. систем, не прямолинейно и не однозначно реагирующих на внешние воздействия вследствие наличия в них собственных мобилизационных механизмов. Именно в кибернетике были сформулированы понятия сложных систем и обратных связей, которые затем нашли применение в самых различных научных дисциплинах и были положены в основу искусственного способа восприятия, позволяющего воспринимать, представлять и описывать эволюцию сверхсложных объектов. Этот способ восприятия сформировался внутри системно-кибернетического подхода.

Основоположник кибернетики выдающийся американский математик Норберт Винер сформулировал основы этой науки в своей знаменитой книге «Кибернетика, или управление и связь в животном и машине», изданной в 1948 г. Название новой науки он произвёл от греч. «кибернетес» – кормчий, рулевой, и «кибернетике» – искусство управления кораблём, или просто управление. У Винера, разумеется, речь идёт об управлении техническими и другими сложными системами при помощи физических воздействий и информационных сигналов, а не об управлении как менеджменте, обеспечивающем эффективную мобилизацию человеческих ресурсов в предпринимательской сфере. Соответственно кибернетика – это особая наука об управлении. Возникнув на стыке математики, физики, технических наук и нейрофизиологии, она изучает механизмы управления в неживых и живых системах, абстрагируясь от науки управления как сложного комплекса гуманитарных социально-психологических подходов.

Исходным рубежом развития кибернетики явилась теория функционирования автоматических устройств. Винер рассматривает принципиальное различие между современными автоматами и автоматически действующими устройствами XVII–XIX веков. Куклы-автоматы и музыкальные шкатулки этого периода двигались и имитировали некоторые человеческие действия по определённой программе, которая, фактически, была аналогична способу действия заводных механических часов. Такая жёсткая программа состояла в механически предопределённой последовательности движений, изменить которую целесообразным образом в зависимости от изменения внешних условий было невозможно. Поэтому и использоваться подобная программа могла лишь для создания механических игрушек и часовых механизмов (а также самострелов и дверей потайных ходов), которые, будучи приведены в действие, не могли подвергнуться никаким управленческим воздействиям, учитывающим изменение обстановки.

Точно такой же, по мысли Винера, была и механическая модель Вселенной, основанная на физике Ньютона и лапласовском детерминизме. Она напоминала хорошо отлаженные механические часы, заведённые Творцом. Изменение физики в начале XX века заставило коренным образом пересмотреть эту модель, а развитие техники на протяжении всего XX века привело к созданию вначале простейших, а затем всё более сложных самонастраивающихся автоматов, т. е. машин с механизмами, способными реагировать на изменение окружающей среды и (или) сообразовывать автоматически запускаемые действия с физическими или информационными (командными) воздействиями человека. В момент создания кибернетики к числу таких самонастраивающихся автоматов принадлежали автоматические устройства для открывания дверей, для зажигания или отключения уличных фонарей в зависимости от уровня освещённости, а также радиовзрыватели, управляемые снаряды, аппараты управления на химических заводах и ряд других. Все они были оснащены сенсорными устройствами, позволяющими воспринимать сигналы из внешней среды и в соответствии с этими сигналами совершать строго определённые запрограммированные действия. Самонастраивающиеся автоматы представляли собой, таким образом, простейшие варианты управляемых машин, действующих в автоматическом режиме, но обладающих способностью настраиваться на управленческие воздействия в зависимости от целей, программ, потребностей и команд человека.

Но вслед за распространением таких простых и однообразно реагирующих автоматических систем в технике XX века открылись возможности и были созданы предпосылки для создания всё более сложных систем, совершающих в ответ на запросы человека всё более сложные действия. Такие технические системы, получая на свои вводные устройства определённые данные, оказывались способными обрабатывать эти данные и на выводе совершать действия, включающие большое число разнообразных комбинаций. Именно они стала объектом изучения кибернетики, получили название кибернетических систем и стали совершенствоваться на основе достижения кибернетической науки. Таким образом, кибернетика проявила себя как наука об управлении сложными самонастраивающимися системами, способными комбинировать поступающие извне сигналы и принимать на основе этих сигналов относительно независимые от управленческих воздействий решения. Наиболее сложной из таких кибернетических систем стала быстродействующая электронно-вычислительная машина (ЭВМ), которая в своём развитии привела к созданию современной компьютерной техники.

Управление сложными системами осуществляется в кибернетике путём целенаправленного формирования обратных связей между управляющей и управляемой системами. Формирование понятия обратных связей и их использование для исследования сложных систем, создания и управления ими стало одним из важнейших достижений кибернетики. Обратные связи выступают в качестве альтернативы прямым связям. Прямые связи характеризуются управленческими воздействиями господства и подчинения, командами, при которых управляющая система воздействует на управляемую, сама не подвергаясь влиянию с её стороны. Обратные связи представляют собой реакции систем, участвующих в прямых связях, причём такие, которые оказывают влияние на системы, вызвавшие эти реакции. Обратные связи подразделяются на положительные, при которых влияние источника воздействия на его приёмник усиливается, и отрицательные, при которых оно ослабляется. Особенно важную роль в эволюции систем играют отрицательные обратные связи. Они обеспечивают стабильность, приспособляемость, регуляцию, выживание и саморазвитие каждой упорядоченной системы.

При этом в кибернетике сознательно отвлекаются от внутренней структуры, строения и вещественного состава управляемой системы, сосредоточиваясь на выполняемых ею функциях и результатах её функционирования. Такой подход выражается в понятии «чёрного ящика», т. е. устройства, от которого требуется выполнение определённой операции и о котором управляющая система располагает всей необходимой полнотой данных в виде параметров, снятых приборами на входе и выходе, но не обязательно имеется информация о внутренней структуре, обеспечивающей выполнение этой операции.

Такой техногенный подход к поведению управляемой системы обеспечивает значительные преимущества для отслеживания этого поведения в рамках того или иного технологического или техникоподобного процесса. Однако он резко ограничивает возможности воспроизведения собственной эволюции системы, не позволяет сконцентрировать внимание исследователей на структурных характеристиках, обеспечивающих развёртывание того или иного эволюционного процесса. Мобилизационное ядро системы остаётся тайной за семью печатями, а значит, система в определённый момент может повести себя совсем не так, как от неё ожидалось и вызвать техногенную и какую угодно ещё катастрофу. Чтобы этого избежать, в кибернетику вводится информационная составляющая, обеспечивающая получение максимальной или даже исчерпывающей в рамках данного процесса информации о тенденциях в поведении системы и о возможных отклонениях такого поведения от тех или иных стандартов. На этой основе кибернетика стыкуется с информатикой и компьютерной техникой, становится мобилизационным ядром их развития. На её основе создаются модели, позволяющие выявить разнообразные зависимости между информацией и любыми реакциями, характеристиками и тенденциями в поведении системы.

Именно на базе кибернетики, в тесной связи с ней и стала развиваться информатика, само название которой возникло в результате соединения слов «информация» и «автоматика», но под сильным влиянием названия «кибернетика». Информатика не является наукой об информации в точном смысле этого слова. Такую роль выполняет информология. Информатика устанавливает зависимости, возникающие между информационными структурами и способами их передачи по каналам связи. Сам характер сообщений, содержащееся в них знание действительности также выступает в виде «чёрного ящика». Кибернетика и её дочерняя наука, информатика, стали основой современной вычислительной техники, открыли перед человечеством компьютерную эпоху и перспективу формирования информационного общества. Компьютерная техника, пронизывающая все структуры современного общества, стала не только основой современной техники, но и важнейшей характеристикой социальной среды. Без неё современный человек вообще не мыслит себе своего существования, сталкиваясь в ней во всех своих деловых и бытовых отношениях. И хотя мода на кибернетику как форму научного мировоззрения уходит в прошлое, её роль в человеческом обществе постоянно возрастает. Это особенно очевидно, если учесть, что все создания компьютерной техники, включая и сами компьютеры, суть не что иное, как кибернетические устройства. А это означает, что влияние кибернетики сохраняется и в структуре современного научного мировоззрения, преломляясь через всю совокупность общенаучных и философских дисциплин, участвующих в формировании новой эволюционной картины мира. Кибернетические модели, проигранные на компьютерах в компьютерных экспериментах позволяют сегодня не только заменить дорогостоящие испытания самолётов в аэродинамических трубах, рассчитать параметры и траектории ракет, вычислить оптимальные параметры любых других технических устройств, но и воспроизвести структуры космических образований, выявить их реальное движение и тенденции развития. Всё это означает, что несмотря на свои довольно скромные результаты в теории эволюции, кибернетика продолжает играть всё возрастающую роль в исследовании эволюционных процессов и в астрономии, и в биологии, и в социологии, и в экономике. Чрезвычайно важной для эволюционной картины мира является и вскрытая именно кибернетикой информационная составляющая эволюционных процессов: соотношение информации и энтропии, информации и энергии, информации и связи.

Уже Н. Винер, закладывая основы кибернетики, предельно обобщил выводы, базирующиеся на исследовании функционирования самонастраивающихся автоматов, перенеся их на все системы с обратными связями, включая живые организмы и их объединения. Кибернетика возникла и развивалась как наука об управлении и связи в машинах, живых организмах и их объединениях на основе получения, хранения, переработки и использования информации. Применение кибернетики к исследованию не только технических систем, но и сложных динамических систем совершенно иной природы – биологических, социальных, экономических, управленческо-административных – обусловлено тем, что поведение каждых из этих систем строится на основе определённого рода обратных связей.

Таким образом, кибернетика изучает, по существу, машиноподобную сторону эволюционных процессов. Научно-мировоззренческое значение кибернетики состоит в выявлении роли в эволюционных преобразованиях механизмов, связанных с управлением, информацией, организацией, прямыми и обратными связями, целесообразностью, функционированием сложных систем в качестве своеобразных самонастраивающихся автоматов. Неживая природа рассматривалась создателем кибернетики в качестве машины с хаотическими обратными связями. Отсюда вытекает представление о Вселенной как машины, с большей вероятностью производящей энергию и с очень малой вероятностью порождающей упорядоченность и разнообразие на основе случайных флуктуаций, своего рода отклонений от общей тенденции к деградации и утрате определённости. Получается парадокс. Раз Вселенной с научной точки зрения никто не управляет, значит, она с кибернетической точки зрения и вовсе неуправляема, анархична, не эволюционирует, а только деградирует, погружается в хаос, движется к хаотическому равновесию и тепловой смерти.

С точки зрения Винера главное достижение физики XX века состоит в том, что она заменила детерминированные модели вероятностными. Будучи по своей изначальной профессиональной подготовке математиком, Винер всю жизнь занимался применением вероятностных моделей. Его идеал – вероятностная физика, и он ещё очень далёк от физики эволюционной. И тем не менее, утверждая свой идеал вероятностной физики, для которой характерно «признание наличия в мире элемента неполного детерминизма, почти иррациональность», Винер прокладывает один из магистральных путей к созданию методологического аппарата эволюционной физики.

За основу своей кибернетически ориентированной модели Вселенной Винер принимает теорию американского математика Дж. Уилларда Гиббса, в соответствии с которой вероятность нарушения организации всегда выше вероятности флуктуаций, ведущих к формированию организации. «Гиббс, – пишет Винер, – выдвигал теорию, что эта вероятность, по мере того как стареет Вселенная, естественно стремится к увеличению. Мера этой вероятности называется энтропией, характерная тенденция энтропии заключается в возрастании» (Винер Н. Кибернетика и общество. Творец и робот – М.: Тайдекс Ко, 2003 – 245с., с. 28).

Кибернетический подход, по Винеру, как раз и заключается в противостоянии общей тенденции природы к нарастанию хаоса, в сопротивлении хаосу путём повышения уровня организации локальных систем. «В управлении и связи, – констатирует он, – мы всегда боремся против тенденции природы к нарушению организованного и разрушению имеющего смысл – против тенденции, как показал Гиббс, к возрастанию энтропии» (Там же, с. 30–31) Хаос проникает в команды, с помощью которой осуществляется управление, подвергает дезорганизации любые сообщения, любую информацию, передаваемую по каналам связи. Он проявляет себя в виде информационного шума. Энтропийные процессы имеют глобальный, всеобщий характер, а информационные и организационные – локальный и частный, ограниченный в пространстве и времени. Винер совершенно не принимает во внимание того, что такое же противостояние энтропии осуществляется в любой мобилизационной структуре на основе механизмов самоорганизации.

«По мере того как возрастает энтропия, – утверждает Винер, – Вселенная и все замкнутые системы во Вселенной, естественно, имеют тенденцию к изнашиванию и потере своей определённости и стремятся от наименее вероятного состояния к более вероятному, от состояния организации и дифференциации, где существуют различия и формы, к состоянию хаоса и единообразия. Во Вселенной Гиббса порядок наименее вероятен, а хаос наиболее вероятен. Однако в то время как Вселенной в целом, если действительно существует Вселенная как целое, присуща тенденция к гибели, то в локальных мирах направление развития, по-видимому, противоположно направлению развития Вселенной в целом, и в них наличествует ограниченная и временная тенденция к росту организованности. Жизнь находит себе приют в некоторых из этих миров. Именно исходя из этих позиций начала своё развитие наука кибернетика» (Там же, с. 28)

Такая трагически-пессимистическая точка зрения на Вселенную, созвучная роковым мотивам «гибели богов» в гениальных операх Рихарда Вагнера, противоречит, однако, эволюционной логике не только современной астрономии и космологии, но и астрофизики, и самой кибернетики. Если вероятность энтропии в целом в неживой природе выше, чем вероятность самопроизвольного упорядочения, если тенденция к дезорганизации и хаосу повсеместна, а тенденция к организации и упорядочению ютится в ограниченных пространствах вследствие случайных флуктуаций вещества, то откуда же взялась эта чрезвычайно разнообразная и многообразно структурированная Вселенная, которой предстоит погибнуть тепловой смертью вследствие всеобщей дезорганизации и утраты разнообразия? Понятно, что подобная точка зрения противоречит принципу разнообразия, выдвинутому и отстаиваемому кибернетикой.

Ни в астрономии, ни в физике тепловых процессов, ни в какой-либо другой сфере физики, ни в химии наука нигде не обнаруживает полного отсутствия структур, полной утраты структурности. Тенденция к утрате структурности наблюдается в тепловых процессах лишь в закрытых, изолированных системах, например, в плотно закрытых сосудах. Но тепловое равновесие отнюдь не означает ни полного хаоса, ни полной бесструктурности, ни абсолютной неопределённости. На уровне атомов и их ядер структурность сохраняются, определённость поддерживается.

Соответственно можно сказать, что самоструктурирование является всеобщим свойством, атрибутом материи, а тепловое равновесие со свойственной ему утратой макроскопической структурности является лишь частным случаем всеобщего процесса самопорождения структур на более глубоких уровнях движения материи. Самоструктурирование является следствием неисчерпаемого разнообразия движения материи, «великого перемешивания», которое происходит на всех её бесчисленных уровнях. При этом само по себе структурирование матери отнюдь не означает, разумеется, преобладания тенденции к организации и порядку. В неживой материи образование хаотических, нерегулярных, неопределённо движущихся и относительно упорядоченных, регулярных, определённо сформированных структур равновероятны. Именно одинаковая вероятность хаоса и порядка во Вселенной создаёт самую возможность появления тенденций к развитию и прогрессу в одних локальных областях, к упадку и дезорганизации в других. Возникновение таких тенденций – это и есть то, что мы называем эволюцией в широком смысле. Тенденции же к росту и усложнению организации, упорядочению, развитию и прогрессу разнообразных структур составляют эволюцию в узком смысле.

Так какая же из этих тенденций преобладает в нашей Вселенной – Метагалактике? На этот вопрос вполне уверенно отвечает эталонная модель современной космологии. Согласно этой модели, наша Вселенная за 15–20 млрд. лет эволюционировала из негеоцентрического сгустка сингулярности в чрезвычайно разнообразную и высокоорганизованную космическую систему, структурирование которой позволило в соответствии с антропным принципом сформироваться на Земле человечеству. Такой срок эволюции Метагалактики, сравнимый с историей такой крохотной космической песчинки, как Земля, вызывает большие сомнения. Возможно, речь должна идти, скажем, о миллиарде миллиардов лет. Но тем не менее очевидно, что наша Метагалактика является бурно прогрессирующей системой, если учесть её колоссальные пространственно-временные масштабы и то обстоятельство, что этот прогресс совершается в косной, неживой материи.

Что же образует это преобладание позитивных тенденций над негативными, прогрессивной эволюции над деградацией, направленности эволюции к возвышению организации над косностью и абсолютным безразличием к собственному существованию неживых структур? Прежде всего наличие кибернетических механизмов, коренящихся в особого рода структурах, которые, образуясь на базе хаотической структуризации и самоорганизации, оказываются способными преобразовывать вещественно-энергетические факторы окружающей среды в генерирование новых упорядоченных по их подобию структур. Такие мобилизационные структуры становятся генераторами порядка, они мобилизуют материю на эволюцию. Именно на их основе происходит повышение вероятности порядка, организации, определённости и снижение вероятности хаоса, дезорганизации, неопределённости. И именно они возбуждают в физических образованиях, химических соединениях, астрономических объектах кибернетические процессы управления, обратной связи, которые не были констатируемы в неживой природе создателем кибернетики и которые превращают нашу Вселенную (и самые различные её подсистемы) из машины, производящей энтропию, в механизм осуществления эволюции.

Возможно, что где-то, за пространственно-временными границами нашей Вселенной существуют деградирующие Вселенные, подходящие под описание Винера, т. е. метагалактики, которые выработали свой мобилизационный потенциал и в которых накопление энтропии создаёт необратимую тенденцию к их тепловой смерти или же к какому-то другому типу преобладания хаоса над порядком и погружения в хаос. В таких метагалактиках действительно будут возникать лишь острова порядка, в которых будет ютиться жизнь и кратковременный по космическим масштабам прогресс. Возможно, наша метагалактика в досингулярном состоянии уже прошла цикл свёртывания эволюционного потенциала, после чего сжалась в негеоцентрический ком и погибла. Но нынешняя наша Метагалактика после её нового рождения в момент Большого Взрыва – это прогрессирующая Вселенная, и именно этот прогресс привёл к образованию жизни и нашему появлению на Земле.

18.2. Кибернетика и проблема управления в неживой природе

Книга Винера, изданная в 1948 г. и давшая начало развитию кибернетики, называлась «Кибернетика, или Управление и связь в животном и машине». Уже в самом названии книги, таким образом, содержалась аналогия между управлением и связью в сложных технических устройствах и в живых организмах, что предполагало в дальнейшем распространение теории управления, базирующейся на изучении автоматов, на все типы сложных систем, включая живую природу, человека и человеческое общество. Биологические, психологические, социальные, экономические, политические и прочие системы были интерпретированы как сложные системы с обратной связью, управляемые на базе поступающей через сенсорные устройства информации и неоднозначно реагирующие на внешние воздействия. Однако, проводя аналогию между управлением и связью в неживых системах, автоматах, и управлением и связью в живых организмах и социально организованных системах, и даже сделав эту довольно отдалённую аналогию основой анализа управленческих механизмов, создатель кибернетики полностью исключил из рассмотрения даже саму возможность управления в неживой природе.

Отрицая универсальный эволюционизм, придавая эволюционизму локальный, ограниченный характер, Винер сужает эволюционное содержание кибернетики, а вместе с тем и её применимость к исследованию космических процессов.

Кибернетический подход к управлению при создании кибернетики базировался на изучении механизмов и сложных динамических систем, характеризующихся внутренней направленностью поведения, целесообразностью. Такие целенаправленные автоматы получили в технике название сервомеханизмов, т. е. служилых механизмов, предназначенных для осуществления определённых целей при помощи выбора наиболее целесообразных моделей поведения. Соответственно и процесс управления понимался в кибернетике в узком, непосредственном смысле этого слова, как целесообразное изменение поведения управляемой системы в соответствии с поступившей на вход сенсорного устройства информацией. Тем самым проводилась непереходимая граница между целесообразно управляемыми системами «островков» организации и самопроизвольно протекающими, спонтанными физическими и химическими процессами, для которых вследствие отсутствия у них каких-либо целей не свойственно какое бы то ни было управление.

Такое жёсткое разграничение, принимаемое кибернетикой, противоречит, между тем, самому духу кибернетики, которая, собственно, и изучает связь организации и управления, воздействие управления на разнообразно организованные сложные системы. Если бы в неживой природе, на необозримых пространствах Космоса не существовало тех или иных форм управления, то никакая организация и никакая эволюция не были бы возможны. Соответственно кибернетический подход к управлению необходимо распространить на системы неживой природы. Разумеется, это не то управление, которое сложилось в человеческом обществе или в живых системах.

Управление есть процесс определения поведения управляемой системы со стороны системы управляющей. В неживой природе происходит нецелесообразное, самопроизвольное, спонтанное управление. Но это именно управление – в широком смысле этого слова. Солнечная активность управляет изменениями климата на поверхности Земли. Земля управляет движениями Луны, Солнце – движениями Земли. Разумеется, Земля не отдаёт приказов Луне, а Солнце – Земле и другим планетам Солнечной системы. Такое управление зиждется на силе гравитации, подчиняющей объекты с меньшей массой и гравитационным полем. Данные системы управления действуют автоматически и представляют собой своего рода кибернетические устройства. Эти системы представляются наиболее простыми, механически детерминированными, подобными по своему устройству тем механическим игрушкам XVIII века без обратных связей, с описания которых Н. Винер начинает своё исследование процессов управления автоматами. На самом же деле эти системы встроены в гораздо более сложные системы космической организации, включающие огромные множества прямых и обратных связей, что и приводит к необходимости использования вероятностных методов при исследовании этой организации.

Автоматические процессы управления сложными системами в неживой природе, в Космосе выступают предпосылками образования процессов управления в биосфере и антропосфере. Не было бы первых – никогда не возникли бы и вторые. Источниками автоматически действующих управленческих процессов выступают феномены, называемые нами мобилизационными структурами. Мобилизационные структуры, обладающие более высоким мобилизационным потенциалом, подчиняют структуры, обладающие меньшим мобилизационным потенциалом и образуют с ними прямые и обратные связи, являющиеся основой всякой организационной целостности.

Машинные аналогии кибернетики очень важны для понимания мобилизационно-организационных и управленческих основ эволюции. Мобилизационные механизмы действуют подобно кибернетическим устройствам, преобразуя случайные сочетания структур в воспроизводимые структурные образования. При этом космические «устройства» не обладают ни сенсорными приспособлениями, ни целеустремлённостью, ни способностью отражать и оценивать собственные состояния, определять качество обратных связей и избирательно реагировать на них. Но у Космоса перед всеми земными машинами, живыми существами и социальными образованиями есть и громадное преимущество. Оно заключается в неограниченности перебора вариантов, осуществляемого в космических масштабах. Структурный подбор и естественный отбор, осуществляемые в таких масштабах, в конечном счёте приводят к тому, что закрепляются и более длительно функционируют структуры, способные сохранять, воспроизводить и распространять достигнутый ими уровень порядка. Перебирая немыслимое число разнокачественных вариантов, природа вырабатывает мобилизационные структуры, способные управлять ходом преобразований и направлять его в русло определённой организации. Процессы образования мобилизационных структур и управления на их основе формированием определённой упорядоченности мы можем представить в качестве своеобразного эксперимента природы, осуществляемого на основе метода проб и ошибок.

Этот эксперимент ежедневно, ежеминутно, ежесекундно протекает как в Космосе, так и на Земле. Земной эксперимент, протекающий в живых и социально организованных системах, связан с целесообразным управлением и эволюционной работой по оптимизации жизнедеятельности, что обеспечивает колоссальное ускорение и качественное усовершенствование прогресса. Но базы земного и космического прогресса несравнимы. Пространственные масштабы земного эксперимента составляют доли световой секунды, тогда как космический эксперимент охватывает многие миллиарды световых лет при необозримом разнообразии участвующих в нём структур. Земной эксперимент является результатом космического эксперимента, а целенаправленные формы управления земных систем ведут своё происхождение от спонтанных, самопроизвольных форм управления космических систем.

Сама логика развития кибернетики приводит к необходимости распространения кибернетической теории управления на управленческие автоматизмы неживой природы, небожественные механизмы управления космическими процессами. Во-первых, само своеобразие кибернетики как науки связано с выявлением фундаментального характера управления, охватывающего самые различные аспекты природы, техники и общественных отношений. Во-вторых, именно в кибернетике внимание исследователей концентрируется на согласовании взаимосвязанных систем, одна из которых является управляющей, а другая – управляемой. Изучение такого согласования очень важно и при исследовании космических процессов. В-третьих, на основе кибернетики возник системно-кибернетический подход, ставший, по существу, основой определённого искусственного способа восприятия. Такой способ позволяет «высветить» функционирование сверхсложных систем путём учёта их входных и выходных параметров, прямых и обратных связей. В-четвёртых, в кибернетике особое внимание уделяется реакциям систем на положительные и отрицательные обратные связи, а также на явления гомеостаза.

При положительных обратных связях реакция усиливает внешнее воздействие, при отрицательных – уменьшает, а гомеостаз позволяет не изменять состояние системы в определённых пределах под внешними воздействиями. Такой анализ реакций также имеет первостепенное значение при исследовании космических процессов. В-пятых, созданный в кибернетике способ изучения сложных систем, получивший название функционального подхода, идеально приспособлен к исследованию космических процессов, поскольку он направлен на выявление сигнального характера реакций системы на внешние воздействия, соотношения стимулов и реакций в управленческих процессах. В-шестых, специфика кибернетики как науки связана именно с управлением поведением автоматов и автоматическими системами управления. Это вполне соответствует специфике космических систем, в которых процессы управления совершаются машинально, автоматически. Американский математик, логик и инженер Джон фон Нейман заложил основы кибернетической теории функционирования автоматов в работе «Общая и логическая теория автоматов». Основная идея Неймана заключается в возможности построения высоконадёжных автоматических систем из ненадёжных компонентов. Именно так выстраиваются процессы управления в неживой природе. Наконец, в-седьмых, бурное развитие компьютерной техники на базе кибернетики позволяет формировать сверхсложные модели управленческих процессов в неживой природе.

Создав методологический аппарат для исследования процессов управления в сложных системах, кибернетика так и не приступила к выявлению специфических форм управления в неживой природе. Произошло это не только по причинам, лежащим в сфере мировоззрения (вследствие отрицания самой возможности управления вне жизни и разума), но и потому, что аппарат кибернетики имел прежде всего техническую направленность, был приспособлен к исследованию и проектированию сервомеханизмов, автоматов, предназначенных для служения человеческим целям. Абстрагируюсь от внутреннего содержания управленческих процессов, протекающих в сложных системах, относясь к этому содержанию как к «чёрному ящику», кибернетика сосредоточилась на управлении сложными системами через целенаправленное создание прямых и обратных связей, введение и выведение определённых информационных сигналов. Процессы мобилизации и управления в неживой природе, в созидательной эволюционной работе Космоса ещё ждут полноценного конктретнонаучного исследования с применением соответствующего математического аппарата. Первые шаги в этом направлении сделала синергетика. Однако она ограничилась исследованием хаотической самоорганизации и «коллективной» гармонизации, оставив в стороне индивидуальное действие упорядочивающих структур и связанные с ним процессы спонтанного управления. Создание эволютики направит внимание исследователей на эти структуры и эти процессы.

Методологический аппарат кибернетики не был приспособлен к исследованию процессов управления в сложных системах неживой природы в силу её техногенной направленности, принципиального отказа от выявления внутренних структур сложных систем, которые порождают спонтанные процессы управления путём мобилизации внутренних потенций самоструктурирования хаотических процессов на образование и поддержание порядка. Тем самым кибернетика оказалась как бы бессильной в своей основной профессии – создании моделей управления, построении всеобщей теории управления автоматическими процессами. Это обстоятельство, безусловно, ограничило значение кибернетики в исследовании эволюционных процессов. Но эта слабость кибернетики составляет и её силу: созданная на базе кибернетики компьютерная техника стала одним из ведущих факторов моделирования сложных систем и продолжает развиваться в этом направлении, открывая пути к воспроизведению в виртуальных моделях таких сверхсложных процессов, которые невозможно было бы воспроизвести обычными вычислительными методами и за тысячи лет.

Что касается синергетики, то она полностью погружена в исследование процессов спонтанной самоорганизации и, сделав громадный шаг вперёд в отображении сверхсложных систем, фактически пробуксовывает в выявлении мобилизационно-управленческой природы эволюционных механизмов, возникающих на базе самоорганизации. Эффекты самоорганизации, самосборки, перехода хаоса в порядок в сложных системах также во многом связаны с проявлениями мобилизационной активности и спонтанного управления, с раздвоением движущейся материи на управляющую и управляемую системы.

Типичным примером самосборки своеобразного кибернетического аппарата автоматического управления из разнородных потоков движения материи является турбулентность. Термин «турбулентность» ввёл в научный обиход Кельвин, произведя его от лат. «турбулентус» – беспорядочный. «Беспорядочность» турбуленции определяется её непредсказуемостью, вероятностным характером происходящих в ней, как и во всякой сложной системе, перемен. Как и во всякой сложной системе, внутренние «побудительные мотивы» поведения турбулентного «вихря», коренящиеся в устройстве его постоянно изменяющейся мобилизационной структуры, скрыты от взгляда внешнего наблюдателя. Они, как выражался выдающийся российский психолог и философ С. Л. Рубинштейн по поводу побудительных мотивов человеческого поведения, детерминируются в момент возникновения.

Турбулентные процессы очень широко распространены в природе, они возникают в жидкостях, в газах, в плазме. Весьма значительная часть материи Метагалактики находится в турбулентном движении, в состоянии так называемого динамического хаоса, который предопределяет во многих отношениях порядок и определённость космических систем. Колоссальная энергия турбулентных процессов, проявляющаяся в разнообразных вихрях, смерчах, торнадо, ураганах, при больших пожарах и т. д. носит весьма разрушительный характер. Турбулентные процессы проявляются и в астрофизике, и в физике атмосферы, и в океанологии. Некое подобие турбуленции проявляется и в поведении людей, действующих под напором эмоциональных всплесков, и в психологии толпы, и в формировании мобилизационных структур, предопределяющих в человеческой истории обширные завоевания, кровавые революции, массовую гибель людей, разрушение достижений различных локальных цивилизаций.

Хаос и порядок, анархия и управление переплетаются в турбулентных процессах самым причудливым образом. При этом наиболее отчётливо проявляется детерминирующая роль мобилизационных процессов, вовлекающих в круговорот событий громадные массы вещества, энергии, информации и заставляющих их «крутиться» в направлении, предписываемом мобилизационным ядром системы. Не хаос как таковой порождает порядок в сложных системах, а мобилизационный потенциал, содержащийся в хаосе и сконцентрированный в мобилизационных структурах, формирует порядок вопреки хаосу по мере образования механизма управления. Таков универсальный путь формирования порядка с точки зрения эволютики.

Конечно, явления динамического хаоса представляют собой лишь особым образом (силовым способом) организованный и управляемый хаос. В них больше хаоса, чем порядка. В этом отношении такие порядки являются аналогом деспотических режимов в социальной сфере: они держатся лишь на силовом давлении, связывают и угнетают энергию входящих в них частей и тем самым создают условия для собственной неустойчивости. Формами силового управления являются так называемые аттракторы – зоны притяжения, подчиняющие себе траектории из окрестных областей. Такое управление не только подавляет, но и порождает хаос, проявляющийся в различных нерегулярностях и колебаниях. Но в этом хаосе образуются и истоки свободы, способствующей оптимизации управления.

В книге И. Пригожина и Г. Николиса «Познание сложного» (М.: Изд-во ЛКИ, 2008 – 352 с.) предложено наиболее ёмкое и яркое описание возникновения и действия автоматического механизма управления преобразованием хаоса в порядок в сложных системах неживой природы. Авторы отмечают, что сложность естественных объектов содержит в себе помимо случайности некоторые типы крупномасштабной упорядоченности. И далее:

«Самоорганизованные состояния материи, допускаемые законами физики неравновесных процессов, представляют собой образцы моделей со сложностью именно такого типа. В самом деле, связанная с разупорядоченностью неустойчивость движения позволяет системе непрерывно прощупывать собственное пространство состояний, создавая тем самым информацию и сложность… Являясь результатом некоторого физического механизма, эти состояния создаются с вероятностью единица, так что проблема выбора конкретной последовательности из очень большого числа априорно равновероятных последовательностей попросту не возникает. В некотором отношении динамическая система, порождающая хаос, действует как своего рода селектор, отбрасывающий огромное большинство случайных последовательностей и сохраняющий лишь те из них, которые совместимы с соответствующими динамическими законами… Присущая этим законам необратимость допускает существование……… устойчивых и тем самым воспроизводимых аттракторов.» (Там же, с. 224).

Итак, наличие динамического хаоса позволяет системе осуществлять перебор вариантов собственных состояний и реализовывать наиболее конкурентоспособный вариант крупномасштабной упорядоченности. При этом сложная система спонтанно образует своеобразный блок управления, который действует как селектор, отбраковывая огромное большинство случайных последовательностей и сохраняя наиболее устойчивые и упорядоченные структурные образования. В таком хаосе коренится свобода, позволяющая системе осуществлять выбор оптимального при данных условиях порядка.

В самых различных явлениях природы можно отследить двухступенчатый характер спонтанного управления. На первой ступени происходит самоструктурирование материи под мобилизующим и управляющим воздействием внешнего источника энергии. Это синергетическая ступень, на которой самоорганизация возникающих структур управляется определённой направленностью движения, потока энергии, который как бы «укладывает» хаотически движущиеся частицы, придавая им определённую регулярность и периодичность местоположения. В качестве упорядочивающей, мобилизующей материю структуры на этой ступени выступает постоянно действующий источник энергии. На второй ступени в результате естественного отбора и самоусложнения структур возникают мобилизационные структуры, обладающие внутренней энергией, достаточной для преобразования определённого фрагмента окружающей среды, её структурирования по образу исходной структуры. Они изымают из этого фрагмента среды дополнительные вещественно-энергетические ресурсы, вступают в конкуренцию с другими структурами за обладание этими ресурсами, образуют слияние или поглощение менее конкурентоспособных структурных образований. Становясь мобилизационными ядрами сложных систем и постоянно усложняясь в процессе системообразования, мобилизационные структуры становятся очагами самопроизвольного управления окружающей материей. На этой мобилизационной ступени образуются предпосылки для дальнейшего усложнения и усовершенствования организации и управления, для развития и прогресса.

Эти предпосылки не могут реализовываться на основе лишь случайного перебора возникающих структур и поддержания наиболее удачных структур естественным отбором. Внутри самих структур происходит эволюционная работа, способствующая спонтанному самоусовершенствованию определённых структур в определённых обстоятельствах и, соответственно, улучшению качества управления. В неживой природе отсутствуют внутренние механизмы, создающие устремлённость мобилизационных структур к оптимизации собственного состояния вследствие отсутствия отражения качества этих состояний в блоках управления этих структур. В результате почти 100 % эволюционной работы осуществляется впустую, структуры возникают и распадаются с определённой цикличностью, а прогресс упорядоченности растягивается на миллиарды лет. Ведь всякий прогресс связан в конечном счёте с повышением качества управления.

В том, что в неживой природе отсутствуют обратные связи, сигнализирующие в сложные системы об их собственном состоянии и тем самым создающие устремлённость к повышению качества управления, кибернетическая трактовка управления совершенно права и безупречна. Но на этом основании нельзя игнорировать наличие управления в космической организации неживой природы. В рамках эволютики необходимо объединить системно-кибернетический подход с синергетическим и мобилизационным для дальнейшего выявления процессов спонтанного управления в неживой природе. Без понимания этих процессов, без дальнейшего конкретнонаучного их выявления останутся неясными предпосылки образования жизни и космической эволюции в целом. Проблема здесь заключается ещё и в том, что в обыденном мышлении, в том числе и в обыденном мышлении учёных, сама возможность управления связывается с наличием целесообразно действующего управляющего субъекта. В кибернетике в качестве такого субъекта рассматривается кибернетический автомат.

Нужно сделать ещё один шаг и признать, что если неодушевлённые автоматы в технике могут рассматриваться в качестве и субъектов, и объектов управления, то и неодушевлённые «автоматы» неживой природы, образуясь в сложных космических системах, могут рассматриваться в качестве субъектов и объектов управления. Они не обладают, конечно, встроенными системами оценки собственного состояния и механизмами, создающими устремлённость к его оптимизации. Но они определённым образом реагируют на обратные связи и образуют достаточно сложные структуры управления движением окружающей материи, потоками вещества, энергии и информации. Без этого спонтанного, нецелесообразного, самопроизвольного управления и автоматического регулирования никогда и нигде не возникла бы жизнь и не сформировался бы разум, который ведь тоже представляет собой не что иное, как управленческую и отражательную мобилизационную структуру космической эволюции.

18.3. Эволюционное содержание информатики

Информатика возникла в 60-е годы XX века как часть кибернетики. Её создание было связано с развитием вычислительной техники, появлением первых компьютеров, созданием высокоскоростных линий связи. К основателям информатики принадлежали Норберт Винер, Клод Шеннон и Уильям Росс Эшби.

Н. Винер почти одновременно с К. Шенноном разработал статистическую теорию количества информации, заложил основы теории управления, в которой ключевую роль придавал приёму, передаче, хранению, переработке и использованию информации, а также прямым и обратным связям с использованием каналов поступления информации от источника к приёмнику. Винер первым отождествил информацию с отрицательной энтропией, что имело фундаментальное значение не только для становления информатики, но и для зарождения впоследствии эволюционной физики.

Вслед за Винером К. Шеннон в 1948 г. (в котором вышла книга Винера «Кибернетика») разработал количественный способ измерения потока информации, содержащегося в одном случайном объекте. При этом информация была интерпретирована как устранение (или, выражаясь философским языком, как снятие) неопределённости. Минимальный шаг в устранении неопределённости был связан Шенноном с различением между двумя знаками, например, между нулём и единицей. Поэтому для оперирования информацией и её передачи была использована двоичная система счисления, и каждое сообщение предлагалось разъять на последовательно поступающие сигналы, различие между которыми проводилось наиболее чётко и недвусмысленно путём разграничением между нулём и единицей. Соответственно было предложено измерять количество информации в минимальных шагах по снятию неопределённости, которые были названы битами. Шеннон произвёл это название от английских слов «бинари дигит», что означает «двоичная система». В качестве более крупной единицы количества информации был введён байт – набор из 8 бит, т. е. количество информации в четырёх двоичных разрядах.

Весьма характерно, что Шеннон называл созданную им теорию информации теорией связи. При создании этой теории он абстрагировался от смысла и ценности информационных сообщений, представив информацию в виде двоичных кодов для передачи её по каналам связи. Практическое значение теории Шеннона заключалось прежде всего в преодолении помех, которые неизбежно возникают при передаче даже чётко различимых сигналов от источника к получателю информации, её адресату. Помехи, или информационный шум, возникают при передаче сигналов постоянно, они являются следствием энтропии, т. е. хаотического, несвязного движения молекул, атомов и элементарных частиц на микроуровнях, а также вторжения различных посторонних физических воздействий извне (например, радиоволн) на макроуровне.

Система передачи сигналов становится уязвимой именно в результате кодирования сообщений, их разъятия на чётко определённые коды. При этом теряется, как бы погружается в непроницаемый «чёрный ящик» смысл сообщения, позволяющий интеллекту человека восстанавливать первоначальный текст по некоторым достаточно существенным деталям. Поступление в передаваемый по каналу связи поток информации посторонних сигналов сразу же затрудняет дешифровку сообщений именно вследствие неразличимости по смыслу полезной информации и шума. Возникает определённый предел допустимого шума, за порогом которого распознавание декодированных сообщений резко снижается либо даже становится невозможным. Нарастание неопределённости в связи с образованием помех требует решения проблемы передачи информации наиболее определённым образом с целью минимизации поступления помех и их максимального устранения. Для этого необходимо либо разработать и установить различные типы фильтров для создания препятствий поступлению помех, либо повысить надёжность передаваемых сигналов путём их повторения в определённом количестве раз. Последний способ наиболее действен, но при его применении происходит снижение скорости передачи информации в столько же раз, во сколько необходимо увеличить число повторений.

К. Шеннон разработал математический аппарат для достижения оптимального сочетания между повторением сигналов и скоростью передачи информации, обеспечиваемой проходимостью каналов связи. Для характеристики количества повторений и для предотвращения искажений и потерь информации под воздействием шума Шеннон ввёл понятие избыточности информации.

Одним из главных достижений теории К. Шеннона была физикализация процессов оперирования информацией и рассмотрение физической стороны информационных процессов. «Основная идея теории связи, – писал он, – состоит в том, что с информацией можно обращаться почти так же, как с такими физическими величинами, как масса и энергия» (Шеннон К. Современные достижения теории связи – В кн.: Работы по теории информации и кибернетике – М.: ИЛ, 1963 – 669 с., с. 404). Главным героем научных произведений Шеннона стал сигнал как физический объект, способный передаваться по каналам связи и оказывать управленческие воздействия на сложные системы. Тем самым был открыт путь к изучению роли информации в физических процессах, в образовании порядка, в космической эволюции в целом. По мысли американского физика и информатика французского происхождения Леона Бриллюэна, теория информации оказывается одним из самых мощных средств исследования, одним из самых надёжных проводников, ведущих нас, подобно ариадниной нити, сквозь лабиринт «гносеологических наслоений» современного научного познания (Бриллюэн Л. Научная неопределённость и информация – М.: Мир, 1966 – 484 с., с. 12)

Следующий важный шаг в развитии информатики был сделан английским психиатром, биологом и нейрокибернетиком Уильямом Россом Эшби. Эшби ввёл понятие уровня организации системы, предложив формулу количественного выражения такого уровня как отношения между информационной энтропией для равновероятных состояний и информационной энтропией для неравновероятных состояний.

Формула Эшби позволила оценивать уровни организации сложных систем, введя для такой оценки чёткие количественные критерии. Она обеспечила возможность измерять уровень организации любой материальной системы, определять количественные различия между вероятностными и детерминированными системами. Появилась возможность количественно характеризовать степень упорядоченности как материальной, так и информационной системы, сравнивать по степени упорядоченности различные системы и определять изменения степени упорядоченности каждой системы, прослеживать динамику изменения степени упорядоченности. Связывая информированность с уровнем организованности и упорядоченности системы, Эшби в то же время рассматривал информацию как меру разнообразия, что соответствовало техническому, кибернетическому подходу к определению сущности информации.

Именно Эшби ввёл понятие и термин «самоорганизующиеся системы», задав тем самым первоначальный импульс к исследованиям процессов самоорганизации в неживой природе, которые в конечном счёте привели к созданию синергетики. Однако подход Эшби как кибернетика коренным образом отличался от подхода, который позднее нашёл воплощение в синергетике. Стремясь создать кибернетическую модель работы человеческого мозга, Эшби разработал техническую модель так называемого гомеостата, позволяющую имитировать восстановление постоянства внутренней среды живых организмов путём адаптации к изменениям среды с помощью системы обратных связей. Тем самым в качестве основы самоорганизации были признаны именно явления гомеостаза, т. е. воспроизведения относительного постоянства состояний сложной системы в ответ на разнообразные воздействия внешней среды. В синергетике же самоорганизация рассматривается в связи с резким выведением системы из состояния равновесия, удалением от стабильного состояния.

Кибернетический подход к исследованию и преобразованию информации связал информацию с управлением и организационным упорядочением сложных систем, привёл к рассмотрению информации как альтернативы энтропии, беспорядочному и бессвязному движению как в технических устройствах, так и в живой и неживой природе. Информация стала рассматриваться как средство управления техническими, физическими, химическими, биологическими и социальными процессами. Такой подход вызвал кризис самого понимания информации, её трактовки с мировоззренческих позиций. Дискуссии о природе информации начались в 60-е годы XX века и продолжаются до сих пор. Особую остроту они приобрели в 70-е годы XX столетия.

Так, в Советском Союзе, где давление коммунистической идеологии обеспечивало жёсткую привязку философского мышления к принципам и положениям «единственно верного учения», в 60-х – 70-х годах XX века развернулась бурная дискуссия об онтологическом статусе информации. При этом одни философы, опираясь на цитаты из классиков марксизма, доказывали невозможность объективного существования информации в неживой природе, признавали возможность такой информации лишь в отношении к мыслящему и воспринимающему субъекту. Другие, указывая на необходимость развивать диамат на базе новейших достижений естествознания, предлагали признать кибернетический подход к информации подтверждением диалектики. Обвиняя своих оппонентов в субъективизме, они рассматривали информационные процессы как существующие объективно, вне и независимо от человека, во всех сферах бытия – в живой и неживой природе, в обществе и человеческом мышлении. При этом они стремились опереться на марксистскую теорию отражения.

Лидер этого направления А.Д. Урсул определял информацию как отражённое разнообразие и как функциональное отражение. А поскольку догмат о всеобщности отражения, сформулированный Лениным, был непререкаем, всеобщность информации также могла быть на этом основании введена в ортодоксальную теорию диамата. В основе разногласий между этими группами лежало различное понимание информации. Традиционное понимание информации как знания приводило к отрицанию существования информации вне отношения к воспринимающему субъекту. Новое понимание информации в генетике и кибернетике отвлекалось от ценности и смысла информации, что создавало разрыв с пониманием информации как результата человеческой деятельности. Это и подогревало накал дискуссии.

В 60-е годы диамат также эволюционирует – от гонений на генетику и кибернетику, объявления их наряду с теорией относительности и квантовой механикой буржуазными лженауками – к предоставлению им статуса конкретнонаучного подтверждения и материала для развития материалистической диалектики. Тем не менее и в этих условиях дискуссия принесла определённые плоды. Она способствовала пониманию многоликости и многообразия самого феномена информации.

Жаркие дискуссии по поводу понимания феномена информации велись и в западных странах. Сторонники различных подходов к объяснению этого феномена брали за основу различные аспекты кибернетической теории информации. Так, Л. Бриллюэн и его последователи связывали понимание информации с негэнтропией, т. е. с процессом, обратным нарастанию энтропии. Поскольку нарастание энтропии определялось как распространение хаоса (в форме, например, информационного шума, помех при передаче сигналов по каналам связи) информация определялась как мера нарастания упорядоченности. У.Р. Эшби и его единомышленники определяли информацию как меру разнообразия. Многие исследователи трактовали информационное воздействие как функцию управления.

Кибернетический подход к понятию информации был связан с переносом смысла этого понятия с выработки и усвоения знания, осуществляемого человеческим мозгом, на структурное многообразие процессов, влияющих на поведение сложных систем. Наличие информации в системах наследственности, открытое генетикой, сделало невозможным ограничение понятия информации узким смыслом, характеризующим обмен информацией мыслящими субъектами. Однако при расширении смысла понятия информации сохранилось различие между двумя видами информации – информации как формы мышления человека, характеризующейся ценностью, смыслом и содержанием, и информации в широком смысле – как меры упорядоченности структуры последовательности сигналов, оказывающей воздействие на внутренние структуры сложных систем и, соответственно, способной влиять на детерминацию их поведения. Регулируя осуществление прямых и обратных связей систем, информация приобретает свойства, определяющие её роль средства управления сложными системами. А поскольку сложные системы существуют повсеместно, информация в широком смысле рассматривается как неотъемлемое свойство, атрибут всего существующего.

Такой подход к информации и получил название атрибутивного. В целом он соответствует и этимологии слова «информация», которое произошло от лат «ин» – внутренний, входящий внутрь и «форматион» – формация, строение, структура. В таком понимании информация становится одним из важных средств раскрытия механизмов эволюции.

Изменения, происходящие в системах в результате отражения ими воздействий других систем, образования прямых и обратных связей, выражаются в форме вещественных или энергетических сигналов, которые воздействуют на чувствительные к этим сигналам структурные компоненты этих систем. Аналогичные взаимодействия возникают и внутри систем, между их подсистемами, элементами, структурными компонентами. Обмен структурно значимой информацией происходит в природе непрерывно, как и обмен веществом и энергией. Поэтому некоторые сторонники атрибутивного подхода к информации нередко говорят о триаде формирующих природу сущностей – Материи, Энергии и Информации, которые в науке заменяют Святую Троицу религиозного мировоззрения.

Расширение смысла понятия информации, произведенное в кибернетике и её дочерней дисциплине информатике повлекло за собой и расширение смысла понятия памяти. Возникли представления о системах с памятью, о веществах с памятью. Подобно тому, как слово «информация», обозначавшее феномен интеллектуальной деятельности человека, стало пониматься как всеобщее свойство действительности, слово «память» также приобрело чрезвычайно расширенное значение. В психологии память определяется как психический процесс, состоящий в сохранении и воспроизведении прошлого опыта. В кибернетике память стала трактоваться как кибернетический процесс, состоящий в сохранении и воспроизведении ранее возникших, определённым образом упорядоченных структур на основе накопленной в недрах данной системы информации. В обоих случаях информация выступает своеобразным мостом от прошлого системы к её настоящему. Всякая система хранит в своей памяти свидетельства своего прошлого, своей истории, поскольку она есть результат предшествующей эволюции.

По этим свидетельствам и воссоздаётся наукой история данной системы, отражённая в её нынешнем состоянии. Наша Вселенная – Метагалактика также является системой с памятью. По её нынешнему расширению мы можем судить о её первоначальном сжатом состоянии, а по реликтовому фоновому излучению получаем информацию о физических параметрах её горячего состояния в начальные моменты расширения. Ибо именно в реликтовом излучении заключена память Вселенной о своих давних состояниях. Наше предположение о том, что Метагалактика развивается по определённой программе, обусловленной достигнутым ею уровнем эволюции в её досингулярном состоянии, также базируется на представлении о Метагалактике как о системе с памятью, сохраняющей определённую информацию о прошлом в своих наиболее фундаментальных мобилизационных структурах. Память вообще есть свойство мобилизационных структур. Деградирующие структуры, как правило, либо беспамятны, либо у них ничего не остаётся, кроме памяти о прошлом, не происходит никакой сколько-нибудь существенной мобилизации на развитие.

Память любой сложной системы неживой природы заключается в структурных особенностях, обеспечивающих частичное возвращение к утраченным ранее состояниям. Структурные характеристики такой системы включают накопленную, но нереализованную на прежних этапах эволюции информацию. Система обладает структурами, которые способны преобразовывать воздействия извне в форму потока сигналов и в соответствии с теорией Шеннона выделять сигналы на фоне помех. Совершать такие операции могут только особым образом организованные структуры, структуры-упорядочеватели, структуры-мобилизаторы.

Хотя наши знания об информационной стороне структурных преобразований в неживой природе всё ещё недостаточны, многое удалось узнать благодаря направлению в развитии информатики, которое характеризовалось синтезом кибернетики и синергетики. Зачатки подхода к исследованию информации, присущего этому направлению, сформулировал уже Н. Винер, который во втором издании «Кибернетики» в 1961 г. и статьях последующих лет размышлял о системах, характеризующихся нелинейными реакциями на случайные входы. При этом он даже употребил термин «синергетическая целостность», хотя понимал под такой целостностью устойчивое состояние, к которому система стремится и может обрести в ходе линейных реакций.

В синергетике же всё как раз наоборот: порядок возникает в состояниях, далёких от устойчивости и равновесия. Винер первым обратил пристальное внимание и на процессы самоорганизации. Но концептуальной базы кибернетики было недостаточно для выявления особенностей управления и информационных процессов в неживой природе. Если именно кибернетике принадлежит первенство в рассмотрении информационных процессов в неживой природе, то в основной профессии кибернетики, исследовании механизмов управления, в отношении неживой природы образовалась брешь, поскольку, впервые приступив к раскрытию управленческих механизмов в природе, кибернетика по мировоззренческим соображениям отвергла саму возможность существования таких механизмов за пределами биосферы. Это обстоятельство наложило отпечаток и на исследование информационных процессов.

В соответствии с кибернетической теорией информации последняя представляет собой средство управления и она распространяется и действует в неживой природе, как и в живой, но управления в неживой природе не происходит, поскольку в ней отсутствует целесообразность. Лишь интеграция с кибернетикой синергетики с её стремлением выявить соотношение порядка и хаоса позволило разрешить этот парадокс кибернетической теории информации. Сама аналогия между неживыми машинами, управляемыми при помощи потоков информации, и сложными образованиями природы, ставшая исходным пунктом формирования кибернетического подхода, требовала его распространения на сложные системы неживой природы, которые также обладают автоматическими реакциями на информационные и энергетические воздействия, и не руководствуются в своём поведении жизненными стремлениями и целями.

Поворот в теории информации, связанный с влиянием синергетики, обозначился в работах американского исследователя Х. фон Ферстера. Ферстер предложил различать кибернетику первого порядка, занятую исследованием тривиальных машин (действующих, по Ферстеру, не только в технике, но и в природе) от кибернетики второго порядка, изучающей нетривиальные, самоорганизующиеся машины. Это машины с памятью, обладающие рефлексивностью, т. е. способностью обращаться к собственным состояниям путём реагирования на накопленную внутри них информацию. Предшествующая эволюция таких систем образует набор своеобразных рефлексов, оказывающих влияние на их поведение. Уже в работе «О самоорганизующихся системах и их окружении», изданной в 1960 г., Ферстер стремится обосновать модель мира, основанную на синтезе кибернетики и синергетики и обладающую как философско-мировоззренческой (онтологической), так и теоретико-познавательной (эпистемологической) новизной. Введение понятия рефлексивности в применении к самоорганизующимся «машинам» неживой природы действительно представляет собой немалый шаг в понимании информационных предпосылок прогрессивного развития сложных систем и в объяснении формирования жизни.

Оказывается, уже в неживой природе формируется машиноподобное качество сложных самоорганизующихся систем, позволяющее им реагировать на информацию о собственном состоянии. Это качество было очень точно названо Ферстером – рефлексивность. Оно базируется на способности создания порядка из шума, хаоса. Именно рефлексивность в неживой природе является формой отражения, образующей важнейшую предпосылку формирования того небезразличия к собственному состоянию, которое характеризует системы живой природы и является важнейшим стимулом для интенсификации эволюционных процессов.

Возникновение живой природы из неживой на Земле было связано с образованием систем с особого рода памятью – генетической памятью, материальным носителем которой явились структуры ДНК и РНК. Генетический способ накопления, сохранения, передачи и преобразования информации представляет собой типичный пример выделения полезной информации из хаоса и шума, обладает механизмом помехоустойчивости.

Чувства всех живых существ являются их информаторами. Они сообщают в центры управления живых организмов сведения об изменениях окружающей среды, событиях внешнего мира и состояниях собственного организма. Они поставляют информацию для выработки моделей поведения и корректируют поведение на основе вновь поступающей информации на каждом поведенческом акте. Психика высших животных позволяет относительно свободно оперировать информацией, осуществлять отбор и накопление жизненно важной информации, создавать на их основе определённые модели окружающего мира. Человеческое сознание представляет собой особую форму информационного устройства. Оно не только получает, но и творит, генерирует информацию, перерабатывает поступающую информацию и превращает её в знание, обладает свободой, позволяющей по-своему интерпретировать информацию и осуществлять выбор информационного обеспечения стратегии поведения.

Оперирование информацией в человеческом сознании, этой сверхсложной системе, гораздо более сложной, чем любые менее высоко организованные информационные устройства, гораздо лучше, чем они, изучено наукой по самым различным направлениям. Колоссальный исследовательский аппарат психологии, физиологии мозга, кибернетики, информатики использован для получения данных об информационных процессах, протекающих под черепной стенкой в коре головного мозга человека. Однако пока поддаются выявлению лишь поверхностные моменты функционирования информационного колосса, умещающегося в голове человека. Мозг остаётся для науки кибернетическим «чёрным ящиком», о котором известны самые различные информационные входы и выходы, но неизвестна, сокрыта целостность этой внутренней информационной Вселенной.

Одним из ключевых свойств человеческого мозга как информационного устройства является высочайший уровень избирательности в восприятии и использовании информации. Поражающая способность человека отвергать или игнорировать очевидное, воспринимать как шум самую правдивую информацию, поддаваться внушениям, верить в существование несуществующих существ, принимать за истину идеологемы, совершенно не соответствующие действительности, также проистекает из творческого характера человеческого сознания, особенностей жизненного процесса, создающих особые фильтры для поступления и оценки информации. Избирательность в поглощении и использовании информации регулируется в человеческом сознании и его бессознательных структурах феноменом установки.

Этот феномен, длительное время изучавшийся научной школой грузинского психолога и философа Узнадзе, представляет собой не что иное как мобилизационный фактор человеческого сознания, продуцируемый мобилизационной структурой человеческого мозга. Человеческие идеи (и научные концепции) суть не что иное, как мобилизационные установки, позволяющие высветить в информационном океане организованную определённым образом информацию, выстроить её в соответствии с социально заданными целями и побудить работать на эти цели, т. е. совершать эволюционную работу в данном конкретном обществе. Соответственно те же механизмы информационного обеспечения, которые побуждают многих людей подавлять восприятие истинной информации, обусловливают и движение людей к самоотверженному обретению истины. В основе функционирования этих механизмов лежат мобилизационные факторы.

Мобилизационные факторы, хотя и совсем другого порядка, лежат в основе функционирования механизмов оперирования информацией и в неживой природе. Если бы не функционирование этих механизмов как предпосылок продуцирования космически значимого порядка, возникновение жизни ни на Земле, ни в каком-либо другом месте или слое бесконечно многообразной Вселенной было бы принципиально невозможным. Благодаря исследованиям, проводившимся на основе синтеза информатики, кибернетики и синергетики удалось выявить некоторые существенные моменты функционирования механизмов упорядочения с использованием информации в неживой природе.

Кибернетический подход к природе как технической системе, структуры которой действуют подобно техническим устройствам и автоматам, управляемым направленными потоками энергии и информации, явился прямым предшественником синергетического подхода, на основе которого удалось показать механизмы первичного преобразования хаоса в порядок. В свою очередь при всей остроте критики, которой со стороны этих подходов подвергся механистический детерминизм, они явились его прямыми наследниками, совершенствуя и развивая технико-подобную модель устройства Космоса. При всей своей условности и относительности такая модель проявляет высокую работоспособность при объяснении многих особенностей реальных природных процессов. Да и человеческое общество во многих отношениях действует как бездушный автомат, поглощающий энергию и информацию и превращающий людей в колёсики и винтики своего механизма.

Синтез кибернетического и синергетического подходов в теории информации оказался необычайно плодотворен в выявлении, так сказать, немеханистической технологии самоупорядочения природных структур с поглощением и направленным действием энергии и информации. Так, в газах и жидкостях происходит сохранение информации в связи с кратковременным сохранением упорядоченности молекулярных структур. При переходе вещества из жидкого состояния в твёрдое в процессе кристаллизации происходит передача информации от кристаллов к молекулам жидкости в виде своеобразных «моделей организации». Кристаллы, магнитные и поляризирующиеся среды способны сохранять полученную информацию, накапливать её в течение длительного времени и предавать другим родственным системам. Передача информации происходит в процессе поляризации диэлектрика при взаимодействии с электрическим полем. Информационный характер связей наблюдается в явлениях резонанса, в основе которых лежит упорядоченное расположение в атомах электронов и их квантовых энергетических уровней.

Исследование Космоса как грандиозной электронно-вычислительной машины, гигантского суперкомпьютера, действующего методом проб и ошибок и порождающего необозримое многообразие упорядоченностей на основе энергоинформационных процессов, продолжается. Неживая природа постоянно экспериментирует, порождая упорядоченности и оперируя самой разнообразной информацией. Этот эксперимент составляет сущность эволюции и создаёт информационные предпосылки для развития и прогресса.