О раковинах моллюсков
Благодаря биоминерализации раковины моллюсков хорошо сохраняются в виде окаменелостей. Тысячи их экземпляров собраны в палеонтологических коллекциях, отражая видовое разнообразие и изобилие экземпляров и тем самым позволяя проводить всесторонние исследования картины эволюции сквозь призму геологического времени. Чтобы извлечь пользу из этого богатого источника информации, нам следует охарактеризовать это разнообразие морфологически и таксономически, дав названия видам и разместив их на правильно построенных филогенетических древах, по которым и будут исследоваться закономерности эволюции. Проблема состоит в том, что каждая раковина обладает лишь немногими дискретными морфологическими признаками, с помощью которых её можно охарактеризовать, а явления конвергенции в форме и орнаментации представлены в летописи окаменелостей в большом количестве. Сравнение отличающихся друг от друга естественных групп моллюсков, таких, как аммониты и брюхоногие, например, показало, что в основе морфогенеза и роста раковины лежат общие принципы генерации. Поскольку в плане индивидуального развития раковина моллюска является высокоинтегрированным объектом, многие особенности раковины часто изменяются в пределах вида совместно. Этот высокий уровень интеграции делает трудным, и даже невозможным определение свойств, которые полностью независимы от других, но это также означает, что, работая с верно выбранной моделью, мы можем многое предсказать в эволюции формы раковины. Это интенсивно исследовалось на примере наиболее известных ископаемых моллюсков, аммонитов. Они образуют полностью вымершую группу головоногих моллюсков, класса, к которому принадлежат осьминоги и кальмары. Их более отдалённым родственником является Nautilus, также представитель головоногих моллюсков, который фактически является единственным ныне живущим видом этой группы с наружной раковиной.
Онтогенез раковины аммонитов был объектом интенсивных исследований, и было выявлено три его основных аспекта: секреция раковины по мере того, как мягкое тело увеличивается в размерах, секреция дополнительных слоёв на внутренней поверхности камер тела и секреция септ в задней части тела, посредством чего образуются камеры в раковине. Первым шагом в онтогенезе аммонитов была эмбриональная стадия, которая обладала раковиной, называемой «аммонителла». Ископаемые остатки её — это маленькие узелки, которые обнаруживаются в хорошо сохранившихся окаменелостях в начале спирали, или же среди кучи неопределённых окаменелостей в углу музейного кабинета. По мере роста раковины возрастает сложность её орнаментации — разумеется, при наличии таковой. Орнаментация принадлежит к числу особенностей строения, как и концентрические и продольные рёбра, шипы, бугорки и кили. Обширные отметины на некоторых раковинах аммонитов позволяют предположить, что могла происходить частичная резорбция раковины, поскольку они отмечают собой разрывы в линиях роста. Орнаментация у аммонитов используется в целях таксономических исследований, и, как было известно на протяжении долгого времени, её степень коррелирует с другими особенностями раковины. Наиболее декорированные виды обладают наименее плотно свёрнутой раковиной, с почти круговыми завитками. Эта корреляция стала известна как закон Бакмана, в честь автора, который первым опубликовал сообщение об этой идее (1892). Ойвинд Хаммер и Хьюго Бюше пришли к заключению, что картина корреляции чётко проявляется внутри вида, но менее чётко на межвидовом уровне. Используя компьютерное моделирование, они продемонстрировали геометрические свойства системы, которые в итоге сводятся к связи развития рёбер и формы устья раковины.
Рисунок 49. Компьютерные модели Хаммера и Бюше (2005) для гипотетических раковин аммонитов, иллюстрирующие корреляцию особенностей для пропорций, меняющихся на основе закона Бакмана. Вид сбоку (сверху) и со стороны устья (снизу). A: Расширенная в стороны (депрессная) раковина, у которой боковые рёбра становятся пропорционально мощнее. B: Раковина, сжатая с боков посредством уменьшения длины поперечной оси, с соответствующим образом слабее выраженными боковыми рёбрами. C: Аммонит с круглой в сечении полостью раковины и равной амплитудой боковой и вентральной ребристости. Поскольку амплитуда вентральных рёбер остаётся постоянной при изменении масштаба поперечной оси, возникает изменчивость в соотношения между амплитудами вентральных и боковых рёбер. По Hammer и Bucher, 2005, с изменениями.
Достижение понимания геометрии раковины, не только у аммонитов, но и у моллюсков вообще, заняло много времени у многих палеонтологов. В 1960-е годы, используя в свое работе осциллограф, Дэвид Рауп стал пионером в области компьютерной параметризации витков раковин, работы, которая заложила основу для возникновения области теоретической морфологии. Его работа, а также другие ранние методы оперировали главным образом двумя измерениями и предполагали наличие оси вращения, которая не имеет реального биологического значения, поскольку возникает a posteriori как результат приращения раковины. Кроме того, многие раковины нельзя рассматривать как закручивающиеся вокруг единственной оси вращения. Традиционные модели не принимали во внимание онтогенетические изменения раковины или периодизацию процессов роста. Авторы более новых подходов стараются учитывать эти проблемы. Одна из последних моделей, разработанная Северином Урди и его коллегами, имитирует форму устья и явление нелинейной аллометрии в процессе роста. Как изменяются эти виды аллометрии, можно проследить, изменяя параметры модели. Конечной целью этого является понимание правил, которым могут подчиняться некоторые текущие эволюционные процессы и межвидовая изменчивость. Биологический аспект этих исследований процесса роста включает подробное изучение мантии, мягкой и эластичной ткани, которая выделяет материал раковины. Мантия не сохраняется в ископаемом состоянии, но любые исследования её свойств и способностей, а также фенотипической пластичности на протяжении времени жизни отдельной особи должны представлять интерес для палеонтологов. Ископаемые остатки предоставляют нам огромный массив данных по морфологии, которые могут быть определены количественно с помощью ещё более сложных и приближенных к реальности морфометрических методы. Пример такого рода — метод, используемый Клодом Монне (не имеющим отношения к художнику) и его коллегами. На основе трёхмерных изображений, полученных путём сканирования с использованием компьютерной томографии на микроскопическом уровне, выделяются морфометрические параметры, которые используются для описания геометрии раковин моллюсков на протяжении всего их онтогенеза и для их сравнения в пределах вида. «Скелетизация» трёхмерных виртуальных раковин позволяет выделить центральную линию, используемую как опорный элемент при получении поперечных сечений раковины и при анализе формы полости с использованием геометрических морфометрических параметров. На основе полученных в ходе этого исследования параметров становится возможным сравнение онтогенетических траекторий различных особей. Аналогичные методы использовали Крис Кружински и его коллеги для количественной оценки морфологической изменчивости склерактиниевых кораллов.
Рисунок 50. Схематические изображения четырёх стадий онтогенеза позднемелового аммонита Hoploscpahites nicoletti, вид сбоку. A) аммонителла; B) неаноконх, первое постэмбриональное время; C) молодая особь; D) взрослая особь. Масштабная линейка = 5 мм. Обратите внимание на увеличение степени орнаментации. Раковина ювенильной особи сильнее сжата с боков и больше скручена, чем неаноконх. По Bucher et al. 1996, с изменениями.
Но, какие бы модели не разрабатывались для понимания эволюции формы раковины, они должны принимать во внимание окружающую среду, поскольку, как было показано в экспериментах и на примере естественных популяций, она оказывает влияние на скорость роста. Внешние переменные параметры среды включают доступность пищи, тип субстрата, солёность, количество растворённого кислорода, мутность, температуру, плотность популяции и экологические взаимоотношения. Например, ныне живущие виды брюхоногих моллюсков могут замедлить скорость своего роста в присутствии хищников, направляя дополнительный материал для построения раковины на локальное утолщение стенок раковины. Увеличение относительной толщины раковины, особенность, часто рассматриваемая как защитный механизм, также вызывается голоданием. Это ещё один пример фенотипической пластичности и диапазона фенотипов, связанных с генотипом, о чём я говорил в главе 2. Одним из основных параметров истории жизни, на который оказывает очень значительное воздействие окружающая среда, является продолжительность жизни.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК