Изучение вирусов животных и человека
После того как Д.И. Ивановский установил способность ВТМ проходить через фильтры, задерживающие бактерии, началось изучение в том же плане возбудителей различных болезней животных и человека. Уже в 1898 г. Ф. Лефлер и П. Фрош сообщили о фильтруемости вируса ящура. Путем количественного определения вируса они показали его способность размножаться в пораженном организме. В течение нескольких последующих лет была установлена фильтруемость возбудителей чумы кур, желтой лихорадки и чумы свиней.
Поскольку большинство вирусов увидеть при помощи светового микроскопа нельзя, усилия ученых на первых этапах были направлены на изучение более крупных образований, которые формируют некоторые вирусы в пораженных клетках. Подобные включения были описаны еще и XIX в. при контагиозном моллюске человека, при оспе птиц (О. Боллингер) и при оспе человека (Г. Гварниери). В 1903 г. А. Негри описал своеобразные тельца, выявляемые в протоплазме нервных клеток при бешенстве. В 1921 г. Б. Линшютц классифицировал вирусные включения по их местоположению в ядре или цитоплазме клетки. Вирусы оспы и бешенства, например, формируют включения в цитоплазме, аденовирусы и герпетические вирусы — в ядре, а вирус кори — в ядре и цитоплазме. Было установлено, что включения различаются по своей структуре. Они могут представлять собой места синтеза вирусных компонентов (основные вирусы), агрегаты вирусных частиц (аденовирусы) или являться следствием нарушенного клеточного обмена (при герпетической инфекции).
Впервые непосредственно вирусные частицы удалось увидеть Дж. Буисту в 1887 г. при исследовании материала от оспенного больного; возбудитель оспы относится к наиболее крупным вирусам, размеры которого находятся на границе разрешающей способности светового микроскопа.
До 1931 г. выделение и культивирование вирусов человека и животных осуществлялось почти исключительно путем заражения восприимчивых животных. Имелись отдельные успешные попытки размножения вирусов в клеточных культурах (осповакцины, ящура), однако ввиду сложности техники они не нашли сколько-нибудь широкого применения.
Путем заражения животных были изолированы и изучены возбудители оспы, бешенства, простого герпеса, гриппа, полиомиелита, лимфоцитарного хориоменингита, желтой лихорадки, ряда клещевых и комариных энцефалитов, энцефаломиелитов лошадей и некоторые другие. Однако этот метод не позволял получать вирус в больших количествах, необходимых для его детального изучения; к тому же большие трудности представляла очистка материала от тканевых фрагментов. Кроме того, далеко не все вирусные инфекции удавалось воспроизвести на лабораторных животных.
Толчком для дальнейшего развития вирусологии послужило открытие в 1931 г. А. Вудраффом и Е. Гудпасчуром возможности культивировать вирус оспы кур в развивающемся курином эмбрионе. Было установлено, что очень многие вирусы хорошо размножаются в этих условиях, накапливаясь в хорионаллантоисной оболочке и жидкостях эмбриона. Очистка вируса от аллантоисной жидкости оказалась сравнительно простой. К тому же у некоторых вирусов (например, ряда представителей оспенной группы) была обнаружена способность вызывать на хорионаллантоисной оболочке очаговые поражения, по числу которых можно весьма точно определить титр вируса.
В 1941 г. Г.К. Херст обнаружил у вируса гриппа способность склеивать эритроциты кур. В дальнейшем у многих вирусов была установлена способность агглютинировать эритроциты тех или иных млекопитающих и птиц. Это дало в руки вирусологов простой метод количественного определения многих вирусов и соответствующих антител.
В 30-е годы были разработаны новые методы исследования вирусов. В 1939 г. М. фон Арденн и X. Руска предложили метод электронномикроскопического исследования вирусных частиц, находящихся во взвеси. Позже была разработана методика получения ультратонких тканевых срезов, позволяющая исследовать электронномикроскопически вирусы внутри пораженных клеток. Для получения концентрированных вирусных суспензий стали использовать центрифугирование при большом числе оборотов. Путем измерения скорости осаждения различных вирусов оказалось возможным определить их размеры и вес. В 1933 г. У.Дж. Элфорд предложил использовать для определения размеров вирусов коллодийные мембраны с различной величиной пор. После получения ВТМ в кристаллическом виде было установлено, что формировать кристаллические структуры могут и некоторые мелкие вирусы позвоночных, например вирус полиомиелита.
Совершенно исключительное значение для развития вирусологии имела предложенная в 1949 г. Дж. Эндерсом, Т. Уэллером и Ф. Роббинсом методика получения однослойных клеточных культур из обработанных трипсином тканей. Она позволяет выращивать практически любые типы клеток. Выращенные в культуре клетки нередко обладают значительно более широким спектром восприимчивости по отношению к различным вирусам, чем те же клетки в организме. При инокуляции достаточной дозы вируса оказалось возможным инфицировать одновременно все клетки однослойной культуры. Это позволило получать вирус в высоком титре, к тому же с небольшой примесью клеточных белков. Большинство вирусов при развитии в однослойных культурах вызывает дегенерацию клеток («цитопатический эффект»). Это явление стали широко использовать для титрования вирусов и антител.
Р. Дюльбекко и М. Фогт (1952) разработали на основе однослойных клеточных культур методику получения под слоем агара или другого геля колоний вируса (бляшек), образующихся из одной инфекционной вирусной частицы. Метод позволил производить точный подсчет количества инфекционных вирусных частиц, а также выделять отдельные клоны вируса, что необходимо при генетических и иных исследованиях.
Размеры вирусов животных и человека находятся в пределах от 300 нм (оспенные вирусы) до 18–22 нм (адено-ассоциированные). Использование электронной микроскопии и рентгеноструктурного анализа в сочетании с рядом других методов позволило в течение последних двух десятилетий расшифровать структуру большинства вирусов. Начало этим исследованиям положили Ф. Крик и Дж. Уотсон в 1956 г. Было установлено, что все вирусы человека и животных состоят из ядра, содержащего один тип нуклеиновой кислоты — ДНК или РНК, и протеиновой оболочки (капсида). Вместе обе эти структуры носят название нуклеокапсида. Капсид любого вируса построен из структурных субъединиц, каждая из которых представляет одну или несколько полипептидных цепей. Существует два типа организации субъединиц — спиральный и кубический. У некоторых крупных вирусов (например, оспенных) могут комбинироваться оба способа соединения субъединиц. При спиральной структуре нуклеокапсид имеет форму тяжа (например, у вируса гриппа), а при кубической — правильного многогранника (например, у аденовирусов).
Мелкие вирусы (например, вирус полиомиелита) представляют собой «голый» нуклеокапсид. Более крупные вирусы (герпетические, миксовирусы) имеют еще внешнюю оболочку, которая у ряда вирусов состоит в основном из материала клетки и содержит протеины, углеводы и иногда липоиды.
Большинство РНК-содержащих вирусов животных и человека содержит одну молекулу одноцепочечной РНК. Исключение составляют реовирусы и группа орбивирусов, у которых РНК состоит из двух комплементарных цепей. У большинства ДНК-содержащих вирусов нуклеиновая кислота представляет собой двухцепочечную молекулу и только одна группа вирусов (парвовирусы) имеют одноцепочечную ДНК. Величина информации, заключенной в нуклеиновой кислоте разных вирусов, различна и зависит от длины тяжа нуклеиновой кислоты. Мелкие вирусы могут синтезировать небольшое число протеинов, более сложные — помимо структурных протеинов еще ферменты. Некоторые вирусы (например, адено-ассоциированные) обладают, по-видимому, недостаточной информацией даже для собственного воспроизводства: для своего размножения они нуждаются в аденовирусе-помощнике.
Для изучения процессов репликации вирусов животных и человека и взаимодействия их с клетками большое значение имел разработанный А. Кунсом (1941) метод окраски вирусных антител флюорохромами, например флюоресцеин-изотиоцианатом, который позволяет изучать при помощи люминесцентной микроскопии динамику накопления вирусных белков в клетке. На том же принципе основано использование конъюгированных с ферритином или пероксидазой антител, когда вирусные антитела в клетке выявляют при помощи электронной микроскопии.
Адсорбция вирусов животных на клетках происходит в результате действия электростатических сил, межмолекулярных сил Ван-дер-Ваальса, а также взаимодействия соответствующих друг другу рецепторов вируса и клетки. Есть вирусы (например, пикорнавирусы), адсорбирующиеся только на восприимчивых клетках; другие (оспенные и аденовирусы) могут соединяться как с восприимчивыми, так и невосприимчивыми клетками. Некоторые клетки, не обладающие рецепторами для взаимодействия с какими-либо вирусами in vivo, приобретают их при культивировании in vitro (почечные клетки приматов к вирусу полиомиелита).
В отличие от бактериофагов вирусы животных не обладают каким-либо сложным аппаратом для введения в клетку своей нуклеиновой кислоты; они просто фагоцитируются клеткой. Некоторые вирусы (например, полиомиелита) уже при адсорбции на клетке теряют свой капсид. Другие (герпетические и оспенные вирусы, миксо- и аденовирусы) проникают в клетку в виде цельных вирионов и уже там нуклеиновая кислота освобождается из капсида.
Было выяснено, что процесс репликации отдельных вирусов человека и животных имеет определенные особенности, однако у всех она протекает по общей принципиальной схеме. Репликация начинается с синтеза «ранних протеинов», которые служат для репликации нуклеиновой кислоты, но не включаются в вирусные частицы. Лишь после этого начинается процесс репликации самой нуклеиновой кислоты.
Что касается процесса синтеза структурных белков, входящих в состав вируса, то оказалось, что он протекает несколько отлично у ДНК- и РНК-содержащих вирусов. Для передачи информации у первых на одном из тяжей ДНК после их расхождения концентрируются рибонуклеотиды, из которых синтезируется РНК (информационная РНК), передающая информацию от ДНК клеточным рибосомам, где происходит синтез вирусных белков. У РНК-содержащих вирусов функция передачи информации принадлежит самой вирусной РНК.
Места синтеза вирусных компонентов в клетке у разных вирусов различны. У оспенных вирусов весь процесс протекает в цитоплазме, у аденовирусов — в ядре, в то время как ДНК герпетических вирусов синтезируется в ядре, а структурные белки в цитоплазме. Созревание всех вирусов, т. е. соединение нуклеиновой кислоты и белков, происходит в цитоплазме, очевидно, по типу кристаллизации.
Внешнюю оболочку вирусы приобретают при прохождении через различные клеточные мембраны. Свернутый в клубок нитевидный нуклеокапсид вируса гриппа и других микровирусов облекается оболочкой в момент прохождения через оболочку клетки. Герпетические вирусы приобретают оболочки при прохождении как сквозь ядерные, так и цитоплазматические мембраны.
В 1946 г. П. фон Магнус представил доказательства того, что при заражении куриных эмбрионов большой дозой вируса гриппа наряду с полноценными вирусными частицами возникали неполные, которые обладали гемагглютинирующей активностью, но не были инфекционны. Позже было установлено, что в неполных частицах резко редуцировано количество нуклеиновой кислоты. В дальнейшем неполные частицы были найдены в культурах многих вирусов. Причины их возникновения могут быть различны; механизм этого явления во многом остается еще неясным.
Были описаны различные формы взаимодействия вирусных частиц, находящихся в одной клетке. Г. Верри и X. Дедрик (1936) наблюдали реактивацию гретого вируса миксомы, если его вводили кролику одновременно с инфекционным вирусом фибромы. Позже было установлено, что в этом случае активный вирус освобождает нуклеиновую кислоту гретого вируса из капсида, вследствие чего она приобретает способность функционировать. При генетической форме реактивации соединяются два или более поврежденных геномов одного вируса.
В 1953 г. Г.К. Херст и Т. Готлиб наблюдали фенотипическое смешивание двух штаммов вируса гриппа с образованием нестойких вариантов. В 1956 г. они описали рекомбинацию двух гриппозных штаммов с появлением генетически стойких вариантов со свойствами обоих родителей. В 1964 г. У.П. Рау и С.Г. Баум, а также Р. Хьюбнер с сотрудниками обнаружили образование гибридов между неродственными вирусами аденовирусом человека и вакуолизирующим вирусом обезьян.
Комплементация у вирусов животных наблюдается при размножении дефектных штаммов вируса саркомы Рауса кур, которые приобретают капсид лишь при помощи некоторых других представителей группы лейковирусов (X. Ханафуза и сотр., 1963). Адено-ассоциированные вирусы, относящиеся к парвовирусам, нуждаются для своей репликации в «помощнике» из иной группы — аденовирусе.
Упомянутое выше цитопатическое действие вируса представляет собой гибель инфицированных клеток вследствие резкого нарушения метаболизма. Далее было установлено, что некоторые вирусы, например возбудитель лимфоцитарного хориоменингита, могут размножаться в клетках без нарушения их структуры.
Принципиально отличной формой взаимодействия вирусов и клеток является трансформация клеток, связанная с онкогенной активностью вирусов. Еще в 1908 г. В. Эллерман и О. Банг установили, что висцеральный лимфоматоз кур можно пассировать бесклеточным материалом. В 1911 г. П. Раус перевил саркому кур бесклеточным фильтратом. В 1936 г. Дж. Битнер открыл вирус рака молочных желез мышей. Большое значение для изучения онкогенных вирусов имела описанная Р.А. Менекером и В. Гроупом (1956) трансформация культуры фибробластов куриного эмбриона под действием вируса саркомы Рауса, когда они приобретали способность к непрерывному росту и делению, как при опухолевом процессе в организме. Затем способность вызывать трансформацию клеток in vitro была обнаружена также у ДНК-содержащих онкогенных вирусов — полиомы, SV40 обезьян, аденовирусов.
Все онкогенные РНК-содержащие вирусы относятся к одной группе — лейковирусам, в то время как ДНК-содержащие — к различным группам — оспенным вирусам, папова, аденовирусам и герпетическим. Общим свойством обеих групп является способность интегрировать свой геном в геном клетки, вследствие чего она приобретает способность к неограниченному росту. Эта концепция была выдвинута Р. Дюльбекко (1960) и Л.А. Зильбером (1961). Было установлено, что трансформированные ДНК-содержащими вирусами клетки содержат часть вирусного генома, синтезируют вирусспецифический трансплантационный антиген, но не продуцируют вирусных частиц (исключение составляют оспенные вирусы). В отношении РНК-содержащих вирусов X. Темин высказал в 1964 г. предположение (вскоре оно получило подтверждение), что они включают в клеточный геном не РНК, а образованную комплементарную двуспиральную ДНК. У всех лейковирусов был обнаружен необходимый для этого фермент — РНК-зависимая ДНК-полимераза (ревертаза) (Г. Темин, С. Мицетани, 1970). Следует отметить, что большинство онкогенных вирусов могут функционировать и как инфекционные, вызывая дегенерацию клеток.
Одной из реакций клетки на внедрение вируса является выработка резистентности к заражению другим вирусом (явление интерференции). В 1935 г. М, Хоскинс сообщил о взаимном подавляющем действии нейтропного и висцеротропного штаммов вируса лихорадки в опытах на обезьянах, а Ф. Маграсси — двух различных штаммов вируса герпеса простого при введении кроликам. Вскоре интерференция была выявлена и между неродственными вирусами, если опыты ставились с куриными эмбрионами или клеточными культурами. Далее было установлено, что резистентность клетки может вызвать не только живой, но и инактивированный вирус. В большинстве случаев интерференция оказалась связанной с синтезом клеткой особого белка — интерферона, открытого А. Айзаксом и Дж. Линденманном в 1957 г. Интерферон обусловливает невосприимчивость клетки к различным вирусам и отличается видоспецифичностью (так, куриный интерферон защищает только куриные клетки).
Надежды использовать интерферон для лечения вирусных заболеваний не оправдались, хотя он и может применяться как профилактическое средство. Большее значение имеет стимуляция синтеза организмом собственного интерферона; индукторами могут служить определенные химические соединения, например двутяжные РНК.
Наиболее эффективным методом борьбы с вирусными инфекциями остается активная иммунизация. Предложенная Э. Дженнером в 1796 г. вакцина против оспы является одним из лучших противовирусных препаратов. Задолго до открытия вирусов была также разработана Л. Пастером вакцина против бешенства. Очень эффективным препаратом оказалась вакцина против желтой лихорадки, разработанная в 30-е годы XX в. Все эти вакцины готовятся из живого ослабленного вируса.
Большое значение в борьбе с полиомиелитом сыграли разработанная Дж. Солком в начале 50-х годов убитая вакцина, а затем и живые вакцины (X. Копровский, 1952; А. Сэбин, 1957). Массовое распространение получила также вакцина против кори. Очень сложным оказалось создание эффективной вакцины против гриппа вследствие перманентной изменчивости циркулирующих в природе вирусов («антигенный дрейф»).
Химиотерапия вирусных инфекций достигла некоторых успехов лишь в последнее десятилетие. Так, 1-адамантанамингидрохлорид действует на первые стадии репродукции вирусов гриппа, парагриппа и краснухи. При оспенном и герпетическом поражении роговицы используют 2-иод-2’-дезоксиуридин, блокирующий синтез вирусной ДНК. Метисазон (из группы теосемикарбазонов) оказался весьма эффективным в отношении оспенной инфекции, подавляя синтез структурных белков вируса.
* * *
Вирусные заболевания обнаружены практически у всех живых существ — млекопитающих, птиц, пресмыкающихся, земноводных, насекомых, растений, бактерий, микоплазм и др. Хотя первая вакцина против вирусного заболевания — оспы — была предложена еще в XVIII в. Дженнером, а вакцина против бешенства разработана в XIX в. Пастером, основоположником вирусологии по праву считается Ивановский, установивший в 1892 г., что возбудитель табачной мозаики проходит через фильтры, задерживающие бактерии, т. е. имеет очень малые размеры. В 1898 г. М.В. Бейеринк показал, что размножение этого агента начинается лишь после его внедрения в цитоплазму клеток растения.
В течение последующих трех десятилетий был открыт целый ряд вирусов животных и человека, разработаны методы их культивирования в организме животных и в куриных эмбрионах. В 1935 г. У. Стенли очистил и получил в кристаллическом виде ВТМ. Было доказано, что он является нуклеопротеидом.
Изучение вирусов показало, что они представляют собой совершенно особую форму органической материи и отличаются как от животных, так и от растений. Поскольку вирусы относятся к наиболее просто организованным организмам, они были использованы в качестве модели для решения ряда фундаментальных проблем биологии. Самые крупные открытия были сделаны при изучении бактериофагов, впервые описанных в 1915 г. Ф. Туортом. Разработанный Э. Эллисом и М. Дельбрюком метод одиночного цикла размножения фагов лег в основу количественных методов их исследования.
В 1948–1949 гг. А. Херши и Р. Ротман построили первую генетическую карту фага Т2. Открытие трансдукции — способности фага переносить генетическую информацию от одной бактерии к другой позволило составить генетические карты бактерий. В 1952 г. А. Херши и М. Чейз показали, что для репродукции фага достаточно проникновения в бактериальную клетку его ДНК, которая является носителем генетической информации. В 1956 г. А. Гирер и Г. Шрамм, а также X. Френкель-Конрат установили, что у РНК-содержащего ВТМ генетические функции несет РНК. Оказалось, что в вирусных нуклеиновых кислотах содержится информация как собственной репликации, так и синтеза белков капсида. Дальнейшее изучение фагов позволило Ф. Крику (1953) раскрыть генетический код. С возникновением молекулярной биологии вирусология стала ее составной частью, поскольку вирусы представляют собой субклеточные объекты макромолекулярного уровня.
Многие методы работы с фагами и возникшие при этом концепции были затем использованы для изучения вирусов растений и животных. Особенно важное значение для работы с, вирусами животных и человека имел предложенный Дж. Эндерсом (1949) способ их выращивания в однослойных клеточных культурах, а также метод точного количественного определения инфекционных вирусных частиц, разработанный Р. Дюльбокко и М. Фогт. Изучение структуры вирусов показало, что псе они построены по общему принципиальному плану и состоят из нуклеиновой кислоты (ДНК или РНК) в одно- или двухцепочечной форме и окружающей ее протеиновой оболочки из отдельных субъединиц; последние расположены по спирали или образуют правильный многогранник. Наиболее сложное строение имеют фаги, состоящие из головки и отростка с чехлом и нитями. Вирусы растений представляют собой образования палочковидной или сферической формы. Вирусы животных и человека обладают сферической или близкой к ней формой. Некоторые из них снабжены внешней оболочкой, состоящей из белков, углеводов и иногда липоидов.
Изучение процессов взаимодействия вирусов и клеток показало, что чаще всего вирус вызывает инфекционный процесс, приводящий к гибели клетки. Реже размножение вируса в клетке происходит без нарушения ее структуры. Своеобразной оказалась форма взаимодействия с клеткой у вирусов, обладающих онкогенной активностью. ДНК-содержащие онкогенные вирусы внедряют в геном клетки часть своего генома, а РНК-содержащие — образованную при помощи особого фермента — обратной транскриптазы — комплементарную своей РНК двутяжевую ДНК. Это приводит к опухолевой трансформации клетки: она приобретает способность к непрерывному росту и делению.
После того как было установлено единообразие структуры и функции всех вирусов, оказалось возможным разработать их рациональную классификацию. В ее основу были положены физико-химические свойства вирусных частиц — их размеры, вид входящей в их состав нуклеиновой кислоты, число структурных субъединиц в капсиде, тип симметрии капсида (спиральный, кубический или комплексный), наличие или отсутствие внешней оболочки, место ее формирования (у ядерной, интерцитоплазматических или поверхностной мембран клетки), наличие или отсутствие в; ее составе липоидов. В соответствии с этой классификацией производится идентификация вновь выделенных вирусов — определение их родовой и видовой принадлежности.