Постановка задачи. Объект и метод в биологии

We use cookies. Read the Privacy and Cookie Policy

История биологии говорит о том, что прогресс в изучении жизни зависит от гармоничного сочетания трех факторов: 1) от идейности постановки задачи; 2) от выбора соответствующего этим задачам объекта исследования (под объектом в данном случае может подразумеваться и серия разных видов, родов и более высоких таксонов) и

3) от правильности выбора соответствующего этим задачам (причем не обязательно самого совершенного и наиболее дорогостоящего) методического арсенала. Лишь сочетание этих трех условий ведет к прогрессу биологии.

Первое поколение цитологов, экспериментальных эмбриологов, генетиков воспитывалось, как правило, в условиях старых университетов, кафедр, лабораторий, с их многолетними традициями, с длительными и фундаментальными большими практикумами. В число этих традиций в лучших лабораториях (например, в коллективе, группировавшемся вокруг Н. К. Кольцова, или в школе Н. И. Вавилова) входило понимание эвристической ценности поразительного разнообразия жизни на Земле и следовавшее отсюда стремление выбрать из этого огромного видового разнообразия наиболее удачные (хотя и не всегда наиболее легкодоступные) объекты исследования.

Работы, выполненные на случайном материале, из-за неудачного выбора объекта, из-за отсутствия настоящей постановки задачи создают лишь «информационный шум» в науке. Нередко приходится слышать, что случайные эксперименты или отдельные разрозненные описания затем могут стать кирпичиками новой системы знаний, что период накопления таких данных, полученных с помощью ультрасовременных для данного времени методов, сродни линнеевскому периоду в биологии. Такое сравнение не правомочно.

Идейность постановки задачи у Линнея и его лучших последователей не вызывает сомнений: это вычленение признаков, удобных для построения иерархической системы, и само построение такой системы. Для ее решения исследовались выборки биологических объектов разной степени сходства. Эти исследования велись на доступном для науки того времени методическом уровне изучения макроморфологии для макроскопических объектов и микроморфологии для микроскопических форм.

Известный отечественный гидробиолог и эколог Г. Г. Винберг справедливо обратил внимание на прогностическую ценность классификации биологических объектов. В самом деле, если на основе сравнительного изучения ряда признаков мы помещаем данный вид в систему органического мира, то уже исходя из его систематической принадлежности мы можем предсказать множество еще не открытых его свойств.

Рис. 171. Титульный лист работы Менделя «Опыты над растительными гибридами».

Проследим на примере из истории развития цитологии и генетики значение гармоничного сочетания идейности постановки задачи, выбора объекта исследования и адекватных методик. Успех первых опытов Грегора Менделя (1822-1884, рис. 171, 172) был связан не только с четкой постановкой задачи, не только с использованием непривычных для биологов того времени статистических методов обработки экспериментальных данных, но и с удачным выбором объекта — гороха, для которого еще в конце XVIII в. английский садовод Томас Эндрью Найт (1759—1839) показал существование дискретности наследования признаков формы и окраски семян. Вспомним обескуражившую Менделя неудачу, когда после опытов с горохом он решил проверить существование открытого им дискретного наследования признаков на других растениях — ястребинках, объекте, неадекватном для изучения данных закономерностей. Трагические последствия этого неудачного выбора известны — Мендель ушел из науки, а открытые им на горохе законы наследственности (1865) оставались забытыми в течение 35 лет.

Рис. 172. Монастырский садик в Брно (Брюнне), где Г. Мендель проводил свои опыты.

Из: Orel et al. (1965).

С последарвиновским периодом хронологически связано бурное развитие цитологии. Создание клеточной теории в 1838—1839 гг. было последним этапом дохромосомного периода развития учения о клетке. Все это время техника исследования оставалась практически той же, с помощью которой Роберт Гук (1635—1712) увидел клетку, точнее, клеточную оболочку в пробке, а Антони ван Левенгук (1632—1723) — мир простейших. Открытие клеточного деления — митоза — и хромосом стало возможным лишь благодаря коренному усовершенствованию микроскопа и разработке новых гистологических и цитологических методов. В 1850 г. Джованни Амичи (1786—1863) — итальянский оптик, астроном и натуралист — впервые предложил водно-иммерсионные объективы. В 1860—1880 гг. появились жидкости, консервирующие клетку, и клеточные красители. На этой методической основе в 1867 г. немецкий ботаник Вильгельм Гофмейстер (1824—1877), а вслед за ним в 1871 г. Александр Ковалевский и в 1872 г. отечественный ботаник Эдмунд Фридрихович Руссов (1841—1897) смогли наблюдать под микроскопом и описать отдельные стадии митоза.

В 1873 г. йенский физик Эрнст Аббе (1840—1905) — ведущий конструктор и идеолог фирмы Карл Цейс — создал осветитель для микроскопа. В том же году немецкий зоолог и эмбриолог Антон Шнейдер (1831—1890) при исследовании дробления яйцеклеток низших червей турбеллярий обнаружил стадии митоза, позднее получившие названия метафазы и анафазы. В 1874 г. Отто Бючли (1848—1920, рис. 173) — широко образованный немецкий натуралист, геолог, зоолог, протистолог и цитолог — на клетках нематод и моллюсков описал митотическое веретено и показал одновременность деления структур, которые позднее были названы хромосомами. В том же 1874 г. московский ботаник Иван Дорофеевич Чистяков (1843—1877) на живых спорах плаунов и хвощей смог впервые наблюдать некоторые стадии митоза у растений. В 1875 г. Эдуард Страсбургер (1844—1912) — варшавянин, ставший йенским профессором, друг Э. Аббе — не только вслед за Бючли описывает веретено, но и обращает внимание на общность картин митоза в клетках растений и животных и устанавливает последовательность его фаз. От первого наблюдения отдельных этапов митоза до определения стадий митотического цикла прошло лишь 8 лет!

Рис. 173. Отто Бючли.

Из I. Jahn, R. L?ther, К. Senglaub (1982).

В 1878 г. тот же Аббе предложил использовать гомогенную масляную иммерсию для микроскопии и сконструировал соответствующий объектив. В 1882 г. немецкий орнитолог и гистолог Вальтер Флеминг (1843—1905), сочетая чрезвычайно удачный новый объект — личинки хвостатых амфибий, которые, как мы теперь знаем, отличаются рекордно большим содержанием ДНК на ядро и, соответственно, рекордно крупными хромосомами, — с новым методом фиксации (жидкость Флеминга), новыми методами окраски и масляно-иммерсионной микроскопией, первый открыл продольное расщепление хромосом в митозе. В том же году В. Флеминг создал теорию митоза.

Возникновение теории индивидуальности хромосом и их генетической непрерывности в чреде поколений теснейшим образом связано с введением в 1883 г. бельгийским зоологом и цитологом Эдуардом ван Бенеденом (1846—1910) еще одного удобного объекта для изучения митоза и оплодотворения (а впоследствии и мейоза) — яиц лошадиной аскариды, вида, характеризующегося крайне низким числом хромосом и рядом интересных особенностей деления направительных телец. Именно на этом объекте Теодор Бовери (1862—1915, рис. 174) — немецкий эмбриолог, зоолог, сравнительный анатом и цитолог — на рубеже XIX и XX вв. доказал существование индивидуальности хромосом — важнейшее для становления цитогенетики открытие.

Рис. 174. Теодор Бовери.

Из: И. Stubbe (1963).

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ