Случаи быстрой хромосомной дивергенции в природе — «робертсоновские веера».

We use cookies. Read the Privacy and Cookie Policy

Уникальной моделью хромосомного видообразования в природе служат так называемые «робертсоновские веера». Это понятие было предложено швейцарским классиком цитогенетики Робертом Маттеем (1900—1981) для обозначения широкой хромосомной изменчивости робертсоновского типа, когда в пределах вида обнаруживается практически полный набор теоретически ожидаемых хромосомных чисел. Первый такой веер был открыт для мышей рода Leggada[689]. В тропической Африке обнаружен почти полный веер форм с 2n от 36 (все хромосомы акроцентрические) до 18 (все хромосомы — метацентрики). Однако эта широкая дивергенция наблюдается на обширной территории и не смогла быть изучена достаточно подробно.

Второй веер был открыт германским цитогенетиком Альфредом Гроппом и итальянским зоологом, гистологом и генетиком Эрнесто Капанна[690]. Эти исследователи обнаружили значительную изменчивость робертсоновского типа у домовых мышей Mus domesticus надвида Mus musculus на территории Альп и Апеннинского полуострова, где хромосомные числа варьируют от обычного для вида 2n=40 (все хромосомы — акроцентрики) до 2n=22. Было показано, что между разными робертсоновскими вариантами кариотипа мышей существует репродуктивная изоляция разного уровня[691].

Третий веер был обнаружен в нашей лаборатории у роющих грызунов — слепушонок группы Ellobius tancrei, относящихся к надвиду Ellobius talpinus. Этот случай хромосомного полиморфизма уникален. Робертсоновский веер слепушонок (рис. 259) отличается от такового у африканских леггад и апеннинских мышей весьма узкой локализацией зоны широкой изменчивости хромосом. На большей части ареала надвида Е. talpinus от Украины на западе до Манчжурии на востоке, от Копетдага на юге до степей Западной Сибири на севере представлены лишь две кариоморфы: Е. talpinus s. str. (2n=NF=54, этот вид характеризуется стабильным кариотипом) и Е. tancrei (2n=54, NF=56).

Рис. 259. Робертсоновский веер и хромосомное видообразование у роющих грызунов — слепушонок надвида Ellobius talpinus. Верхняя форма слева — E. talpinus s. str. — хромосомный вид, распространенный от Украины до Зауралья (2n=NF= 54, диплоидное число хромосом равно числу плеч). Вторая форма слева — E. tancrei — кариоморфа, распространенная от Аму-Дарьи до Монголии (кроме долины Вахша-Сурхоба в Таджикистане и высокогорий в Киргизии), 2n=54, NF=56 (в первой зоне хромосом произошла инверсия — поворот участка хромосомы на 180° при неизменном генном составе увеличилось число плеч от NF=54 до NF=56). Все остальные кариоморфы с 2n от 51 до 31 при неизменном NF=56 произошли за счет робертсоновского слияния хромосом и, быть может, гибридизации в одной долине Памиро-Алая, в долине рек Сурхоб-Вахш. Эти кариоморфы обладают частичной репродуктивной изоляцией, но не отличны морфологически и экологически.

По Е. A. Lyapunova et al. (1980) из Н. Н. Воронцова.

Иная ситуация наблюдается в узкой зоне гор Памиро-Алая и южного Тянь-Шаня от Душанбе на западе до оз. Чатыр-Кель на востоке. Здесь на базе кариотипа Е. tancrei с NF=56 сформировались многочисленные кариоморфы. Наибольшее разнообразие кариотипов наблюдается в узком участке долины рек Вахш—Сурхоб, где обнаружен полный робертсоновский веер кариоморф со всеми 25 возможными вариантами хромосомных чисел от 2n=54 до 2n=31[692]. Показано, что значительная часть этого хромосомного разнообразия возникла в результате ... зации относительно небольшого числа исходных вариантов. В настоящее время в природе обнаружены и географически локализованы зоны распространения кариоморф с 2n=32 (северный берег Вахша—Сурхоба), 2n=34 (южный берег Сурхоба), 2n=50 (высокогорья Гиссарского хребта у Ходжа-Оби-Гарма, северо-западные склоны хребта Петра Первого, крайний восток долины Сурхоба у Ачик-Альмы), 2n=52 (Алайская долина, Алайский хребет и сырты близ оз. Чатыр-Кель). Все остальные варианты встречаются в гибридных зонах.

Как возникли низкохромосомные варианты? Более просто было бы представить себе серию робертсоновских мутаций 54?52?50?48?36?34?32. Однако если распространение 52- и 50-хромосомных форм не противоречит этой гипотезе, то распространение форм с 48—36 хромосомами лишь в зонах интрогрессии явно с ней не согласуется. Вот почему можно допустить, что эволюция от 54-хромосомного к 50-хромосомному кариотипу шла за счет поэтапных робертсоновских транслокаций, тогда как 34- и 32-хромосомные кариотипы должны были возникнуть за счет резкой скачкообразной перестройки всего кариотипа в целом, приведшей к одномоментному слиянию 16—20 акроцентрических хромосом в 8—10 метацентриков. Благодаря неабсолютности репродуктивной изоляции между кариоморфами со столь разными диплоидными числами, появление 32-хромосомной формы могло стать предпосылкой для последующего возникновения всего робертсоновского веера за счет гибридизации. Путем экспериментальной гибридизации в неволе был получен робертсоновский веер слепушонок[693]. Однако если в неволе гибриды между формами 54 и 34 характеризовались гетерозиготностью по 20 акроцентрикам —_10 метацентрикам у гибрида с 44 хромосомами, то в природе мы встречаем гетерозигот лишь по одной паре хромосом. Таким образом, веер, существующий в природе, и веер, полученный в неволе, не вполне тождественны друг другу.

Как соотносятся кариологические отличия с морфологическими? Если для Е. talpinus s. str. (2n=NF=54) и E. tancrei (2/2=54, NF=56) были обнаружены и морфологические различия в строении зубов, в окраске меха[694], то для форм робертсоновского веера Вахша—Сурхоба мы не обнаружили морфологических отличий между разными кариоморфами, не было также обнаружено частотных отличий в спектрах изозимов. Таким образом, в случае робертсоновских вееров мы наблюдаем четкое опережение темпов хромосомной эволюции по сравнению с темпами эволюции как на генном, так и на морфологическом уровнях[695]. Вместе с тем ясно, что существование частичной репродуктивной изоляции между кариоморфами, определяемой в 2—3% летальности гибридов между вариантами с близкими хромосомными числами и доходящей до 50% у форм с крайними кариотипами, создает предпосылки для дивергенции кариоморф по их экологии, этологии, морфологии, частотам аллелей[696].

В последние годы в нашей лаборатории был открыт и исследован еще один робертсоновский веер у субальпийских кустарниковых полевок (Pitymys) Кавказа и Закавказья[697].

С теоретической точки зрения возникновение новой кариоморфы, репродуктивно изолированной (частично) от родительской формы, является процессом скачкообразным. Особенно следует подчеркнуть тот факт, что у слепушонок мы встречаем отдельные полиморфные по числу хромосом популяции. Так, на сыртах Тянь-Шаня в одной популяции встречаются особи с 52, 51 и 50 хромосомами, на хребте Петра Первого — с 50, 49 и 48 хромосомами. Ясно, что такие популяции неустойчивы, и то, что их удается обнаружить в природе, достойно удивления. Поскольку экологически особи с разными числами хромосом одинаковы, занимают одну и ту же нишу, то, в соответствии с правилом Г. Ф. Гаузе, одна из кариоморф со временем неминуемо вытеснит другую. Существование частичной репродуктивной изоляции между разными кариоморфами дишь ускорит процесс конкурентного взаимоисключения. Таким образом, в результате действия процесса конкурентного взаимоисключения разные кариоморфы довольно быстро станут вторично аллопатричными.

Сторонники существования одной лишь аллопатрической формы видообразования в своих доводах нередко упускают, что аллопатрия может быть вторичной, и рассматривают результаты конкурентного взаимоисключения экологически близких, но репродуктивно изолированных форм как свидетельство в пользу аллопатрического видообразования. Нетрудно видеть, что здесь следствие путается с причиной.

Постепенный или прерывистый характер носит видообразование за счет перестроек хромосом? Несомненно, что становление хромосомной мутации, возникновение репродуктивной изоляции — процесс скачкообразный. Однако морфологическая дивергенция репродуктивно изолированных видов-двойников может существенно отставать по своим темпам от хромосомной дивергенции, может идти постепенно. В самом деле, если возникла вторичная аллопатрия хромосомно дивергировавших кариоморф и даже если прошел отбор на возникновение этологической изоляции этих кариоморф, совершенно не обязательно, что темпы морфологической эволюции этих видов-двойников окажутся более высокими, чем разных подвидов одного вида. Ведь эти виды-двойники могут занимать близкую нишу, и в этом случае они будут испытывать сходно направленное давление отбора и эволюировать постепенно, параллельно и в одном и том же направлении.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ