Скорости изменения размеров
Скорости изменения размеров
Изменение размеров представляет собой одно из наиболее часто встречающихся эволюционных явлений. В общем увеличение размеров - преобладающее направление эволюции. В таких различных группах, как фораминиферы и динозавры, известны примеры гигантов, возникших от мелких предковых форм. Однако «больше» это не всегда «лучше», и крупные животные (вроде слонов) иногда давали начало карликовым формам. Скорости изменения величины в процессе эволюции определить легко. Размеры гомологичных структур, таких как раковины, кости или зубы, у эволюционно близких организмов можно точно измерить, и, зная продолжительность периода, в течение которого произошло изменение размеров, определить его скорость. Такие измерения позволяют получить простейшую количественную меру эволюции, и их можно производить независимо от преобразований формы, которые гораздо труднее оценить количественно. Эти измерения позволяют оценить эволюционные изменения, обходя проблему объективности, возникающую при определении скоростей таксономических изменений.
Сравнения абсолютных изменений размеров обычно бесполезны, потому что в общем приходится для начала сравнивать организмы разной величины. Поэтому необходима какая-то мера относительного или процентного изменения размеров за некоторый отрезок времени, принятый за стандарт. Подобную относительную меру предложил Холдейн (Haldane, 1949). Например, если за интервал времени t средняя длина какой-либо кости или другой структуры увеличивается от x1 см до x2 см, то относительную скорость изменения можно выразить в виде
Холдейн использовал это равенство, чтобы вычислить относительное увеличение размеров, и предложил термин «дарвин» для обозначения единицы эволюционного изменения размера, равного изменению в е (2,3) раз за 106 лет. Холдейн считает, что в практических целях 1 дарвин можно примерно приравнять к изменению размеров на 0,001 за тысячу лет, что дает изменение размеров вдвое за 106 лет.
Скорости изменения размеров могут сильно варьировать по степени и продолжительности. Так, например, по оценкам Симпсона (Simpson), высота коронки зубов у лошадей линии от Hyracotherium (Eohippus) к Mesohippus на протяжении эоцена-олигоцена увеличивалась со средней скоростью, равной примерно 25 миллидарвин. От раннеолигоценового Mesohippus до миоценового Hypohippus эта скорость несколько возросла, достигнув 45 миллидарвин. Все эти формы объедали листву молодых деревьев и кустарников. Ныне живущая лошадь Equus - обитатель равнин, питающийся травой. Лошади, щиплющие траву, дивергировали от форм, объедавших листву, в миоцене; это линия Mesohippus - Merychippus, в которой скорость увеличения высоты коронки зубов повысилась до 80 миллидарвин, что привело к увеличению высоты коронки в четыре раза примерно за 20 · 106 лет. Эта умеренно высокая скорость увеличения размера зубов была лишь частью, хотя и существенной, эволюции лошадей, щиплющих траву. Одновременно происходили модификации формы черепа, совершенствование головного мозга и глубокие изменения в строении стопы, ноги и других частей скелета, необходимых для быстрого бега. Увеличение высоты коронки сопровождалось радикальными изменениями строения зубов: увеличением числа бугорков и переходом от сравнительно простых зубов, состоявших из дентина, покрытого эмалью, к зубам, на поверхностях которых имеются высокие складки эмали, а промежутки между складками заполнены твердым цементом, в результате чего создается эффективный и прочный жевательный аппарат. Размеры зубов увеличились у Merychippus не так заметно, как их форма, однако изменения формы не могли бы произойти без сопутствующего увеличения высоты зубной коронки. Подробное описание этих изменений можно найти в увлекательной книге Симпсона «Лошади».
Такие скорости увеличения размеров коренных зубов, как у лошадей, довольно часто встречаются у млекопитающих и во многих других группах организмов. Ван-Вален (Van Valen) составил таблицу эволюционных скоростей изменения размеров для различных простейших и беспозвоночных; оказалось, что эти скорости варьируют от 3 до 300 миллидарвин, при средней скорости 40 миллидарвин. По данным Маглио (Maglio), увеличение высоты зубной коронки у мамонтов линии Mammuthus africanus - M. meridionalis - M. armenicus в плио-плейстоцене происходило со скоростью 300 миллидарвин, сохранявшейся в течение примерно 2 · 106 лет и давшей в целом увеличение в 1,8 раза. Халам (Hallam) выявил также широкий диапазон скоростей увеличения размеров у юрских двустворчатых моллюсков и аммонитов. Для двустворчатых этот диапазон составлял 6-546 миллидарвин со средней скоростью 109 миллидарвин. В некоторых очень длинных линиях, таких как линия двустворчатых от Gervillela lanceolata до G. aviculoides, умеренная средняя скорость 55 миллидарвин, сохранявшаяся на протяжении почти 40 · 106 лет, привела к увеличению размера раковины в четыре раза. У одних видов направление изменений было постоянным, а у других оно варьировало. У Gryphaea размеры вначале увеличивались, затем уменьшались и в конце вновь увеличивались. У других видов скорость увеличения размеров в разные периоды понижалась или повышалась. У аммонитов увеличение размеров происходило быстрее, что соответствует более высокой скорости их эволюции, оцениваемой по таксономическим критериям; скорости варьировали у них от 64 миллидарвин до 3,7 дарвин со средней 584 миллидарвин. Халам обратил внимание на одно особенно интересное явление. Увеличение размеров может быть значительным в пределах одного вида или короткой последовательности видов; однако в палеонтологической летописи часто появляются виды, которые существенно мельче своих предшественников, а промежуточных по размерам форм выявить не удается. Халам интерпретировал свои наблюдения, как свидетельствующие о том, что в эволюции его юрских моллюсков было две тенденции. Одна состояла в более или менее постепенном увеличении размеров, которое, по его мнению, обычно ведет к эволюционному тупику. Другая тенденция - относительно внезапное уменьшение размеров, которое может привести к изменениям морфологии и к видообразованию.
Исключительно высокие скорости возникновения карликовости известны для позднеплейстоценовых млекопитающих Австралии, Евразии и Северной Америки. Экологические причины быстрой эволюции в сторону карликовости все еще не вполне ясны. Однако представляется вероятным, что она была вызвана давлением, направленным на сохранение адекватных размеров популяции при усилении ограничивающего воздействия ресурсов. Явление внезапного (по геологическим масштабам) уменьшения размеров хорошо документировано. Кертен (Kurten) вычислил скорости развития карликовости у европейских млекопитающих в конце ледникового периода и в послеледниковое время. За такие короткие промежутки времени, как 5-15 000 лет, размеры куницы, медведя, дикой кошки, росомахи и других животных заметно уменьшились. Скорости уменьшения размеров колебались от 3,7 до 43 дарвин, при средней скорости 12,6 дарвин, которая если бы она сохранилась, привела бы к уменьшению размеров вдвое всего за 80 000 лет. Сходные очень высокие скорости развития карликовости в период от 30 до 20 тысяч лет назад наблюдаются у таких австралийских сумчатых, как кенгуру и сумчатая куница. Скорости этого процесса, вычисленные Маршаллом (Marshall) и Корручини (Corruccini), лежат в диапазоне 9-26 дарвин.
Быстрое развитие карликовости у млекопитающих, примеры которого были здесь приведены, продолжалось достаточно долго, так что уменьшение размеров достигало 10-35%. Некоторые плейстоценовые млекопитающие, однако, уменьшались более значительно. Самым, казалось бы, невероятным примером этого служат карликовые слоны. Крупный европейский Elephas namadicus дал начало ряду карликовых форм, живших на разных островах Средиземного моря в конце плейстоцена. Самый маленький из них, E. falconeri, был размером с пони. К сожалению, стратиграфические данные слишком скудны, чтобы можно было точно определить скорость уменьшения размеров, однако, по мнению Маглио, процесс этот продолжался относительно недолго - не больше нескольких сот тысяч лет. Островные слоны, вероятно, вели себя как популяция, претерпевающая прерывистую эволюцию. Они были изолированы от основной видовой популяции Е. namadicus, занимали ограниченную географическую область, и численность их была ограниченной. Была ли их эволюция прерывистой? Если да, есть ли необходимость говорить о необычайно высокой скорости уменьшения размеров от Е. namadicus до Е. falconeril Если допустить, что превращение в карликовую форму продолжалось более чем 100 000 лет, то достаточной оказалась бы скорость порядка 16 дарвин. Это высокая скорость, но у других млекопитающих были обнаружены еще более высокие скорости развития карликовости. При максимальной скорости в 43 дарвин, обнаруженной Кертеном, понадобилось бы всего 40000 лет - одно геологическое мгновение.
И Стенли (Stanley), и Халам (Hallam) полагали, что в генетическом отношении наиболее доступный путь для быстрого превращения столь различных организмов, как позвоночные и аммониты, в карликов - это педоморфоз, при котором мелкие морфологически ювенильные формы достигают половой зрелости. Этот процесс, возможно, представляет собой важный способ возникновения новых морфологических изменений путем прерывистой эволюции. Педоморфоз мог также играть известную роль в развитии карликовости у австралийских сумчатых, но он представляет собой лишь один из путей генетического изменения размеров. Высокие скорости уменьшения размеров, обнаруженные у плейстоценовых млекопитающих, легче понять, если обратиться к механизмам карликовости у ныне живущих млекопитающих. Карликовые формы известны у лошадей, коров, овец, свиней, собак, человека и даже мышей. Мак-Кьюсик (McKusick) различает два основных типа карликовости. Хорошим примером карликовости одного типа, характеризующимся непропорционально короткими конечностями, служит ахондропластическая карликовость, наследуемая как простой аутосомный доминантный признак. Этот тип карликовости, вероятно, неадаптивен. При другом типе - ателиотической карликовости - развивается вполне пропорциональная миниатюрная копия нормального животного. У человека карлики этого типа возникают по трем основным причинам, которые все связаны с продукцией или с использованием гипофизарного гормона роста. В первом случае у карликов отсутствует гормон роста, а в третьем - все гормоны передней доли гипофиза. Во втором случае в тканях-мишенях отсутствуют рецепторы гормона роста. Несмотря на то что уровень этого гормона в организме выше нормального, индивидуум остается карликом. Во втором и третьем случаях карликовость наследуется как простой аутосомный рецессивный признак, определяемый одним главным геном, на который могут влиять еще и гены-модификаторы. Так, изменение единичного гена, приводящее к изменению одного простого гуморального фактора, может иметь резко выраженные морфогенетические последствия. При сильном давлении отбора или в изолированных популяциях вполне можно допустить высокую скорость развития карликовости. Подобная карликовость возникает в популяциях человека; так, у пигмеев племени итури, обитающих в Конго, рост которых равен в среднем 120 см, вся популяция стала карликовой, по-видимому, в результате закрепления в ней одного аллеля, определяющего секрецию неполноценного гормона роста.