Глава 11 Эукариотический геном и парадокс значений С
Глава 11
Эукариотический геном и парадокс значений С
У нас нет достаточных оснований допускать, что эволюция происходит прежде всего за счет увеличения числа генов у высших форм ... главную роль играет не число появляющихся новых генов, а их виды.
Т. Морган. «Научные основы эволюции»
Величина генома и сложность организмов
Положение Моргана о зависимости между числом генов и сложностью организмов было опубликовано в 1932 г. Позднее, после того как следующим поколением исследователей было установлено, что гены состоят из ДНК, стало возможным получить гораздо более ясное представление о природе генов, однако достигнутые успехи еще больше запутали вопрос о зависимости между числом генов и сложностью организма. В целом измерение количества ДНК, содержащегося в гаплоидном геноме (значение С) у большого числа самых разнообразных организмов, указывает на повышение содержания ДНК с увеличением сложности, однако величина генома варьирует так сильно, что у многих морфологически примитивных организмов геномы оказались значительно больше, чем у морфологически более продвинутых форм. Это явление, получившее название парадокса значений С, или С-парадокса, иллюстрирует рис. 11-1.
Любая схема, подобная рис. 11-1, опасна тем, что ее можно принять за своего рода лестницу живых существ, созданную в XX веке, и в известном смысле так оно и есть. Прямое сравнение относительной сложности форм, обладающих различной морфологической организацией, неизбежно будет субъективным. Есть, однако, два показателя сложности, которые могут служить приближенными мерами: это число типов клеток, различаемых у представителей данной группы организмов, и число терминов, используемых систематиками для их описания. Теоретическое оправдание использованию числа типов клеток дал С. Кауфман (S. Kauffman), выдвинувший положение о том, что число дифференцированных клеточных типов в организме зависит от числа стабильных состояний, создаваемых в результате регуляторных взаимодействий, возможных в пределах того или иного генома. Оценить число клеточных типов у сравнительно несложных организмов относительно просто. Так, у бактерий имеются клетки двух типов (вегетативные клетки и споры), у дрожжей - 3-4 типов, у водорослей и грибов - примерно 5 типов, у губок - 11, у кишечнополостных - 14-20, у растений - от 20 до 40, у кольчецов - примерно 55. Для более высокоорганизованных животных получить такие оценки труднее; возможно, что оценка Кауфмана, считающего, что в организме человека содержатся клетки 100 разных типов, занижена на целый порядок.
Шопф и др. (Schopf et al.) предложили оценивать сложность данной формы на основании числа терминов, используемых систематиками для ее описания. Такие оценки сложности окажутся, возможно, менее объективными, чем основанные на гистологической дифференцированности, если считать, что число клеточных типов точно определено, хотя для сложных организмов это весьма проблематично. Число терминов может зависеть от различий в практике систематиков, изучающих разные группы. Так, например, если говорить о моллюсках, то для аммонитов используется меньше терминов, чем для других организмов, сравнимых с ними по степени сложности, потому что словесное описание их очень причудливых лопастных линий обычно бывает предельно кратким. В группах, активно исследуемых многими морфологами или систематиками, имеются специальные названия для многочисленных и гораздо более мелких признаков, чем в малоизвестных группах. В целом использование числа терминов представляется действенным, хотя и грубым способом выражения морфологической сложности. Однако эта мера не всегда хорошо соответствует оценкам, основанным на гистологической сложности. В сущности, у таких организмов, - как фораминиферы (Protozoa), для которых Шопф и др. насчитывают 266 морфологических терминов, вообще не приходится говорить о соответствии между гистологической и морфологической сложностью.
При распределении организмов по степени сложности, схематически представленном на рис. 11-1, главным критерием служило число клеточных типов, а число терминов играло второстепенную роль. Среди групп, связанных родством (например, среди позвоночных), филогенетически более примитивные группы обычно помещали ниже более продвинувшихся групп. Следует принять, что при этом были допущены некоторые вольности. Так, например, двоякодышащие-более древняя группа, чем костистые рыбы, но они связаны более близким родством с амфибиями. Величина генома выражена числом пар нуклеотидов. Приблизительную оценку содержания информации в терминах структурных генов можно получить, допустив, что у обычного структурного гена кодирующая последовательность состоит из 1500 нуклеотидных пар. Самые маленькие вирусные геномы содержат (даже если допустить, что гены перекрываются, а рамки считывания чередуются) всего несколько генов. Самое низкое число нуклеотидных пар, 0,7-106, обнаруженное у бактерий, считается минимальной величиной генома, необходимой живой клетке. Аналогичным образом для грибов самое низкое число нуклеотидных пар, эквивалентное 10 000 средних генов, найденное у дрожжей, считается минимальной величиной генома для эукариотической клетки. Геномы простейших многоклеточных животных - губок - имеют примерно такую же величину, как геномы грибов, и близки к минимальным величинам для водорослей и Protozoa. У кишечнополостных геномы также невелики, оставаясь в пределах величин, найденных для грибов. Число клеточных типов у кишечнополостных гораздо больше, чем у грибов, однако некоторые грибы имеют сложное строение, и значения С у разных видов могут различаться в 10 раз, так что перекрывание нетрудно объяснить. У более сложных организмов значения С различаются в широких пределах. Для любой группы, по которой изучено достаточно большое число видов, мы вправе считать самое низкое из значений С разумной оценкой минимальной величины генома для данной группы. В отдельных группах обычно наблюдается широкий диапазон значений С - иногда содержание ДНК у разных видов различается на четыре порядка. В некоторых случаях в результате полиплоидии этот диапазон расширяется даже еще сильнее.
Рис. 11-1. Парадокс значений С - отсутствие соответствия между величиной генома и морфологической сложностью. Черными полосками показаны диапазоны величины гаплоидного генома для крупных групп организмов. Группы расположены в порядке возрастания морфологической сложности - самые простые внизу, а самые сложные вверху. Очевидно, что такое распределение чрезвычайно субъективно. На вертикальных осях для некоторых групп приведены два критерия сложности: примерное число клеточных типов (слева) и число описательных морфологических терминов (справа). (Значения С приводятся по данным Sparrow et al., 1972.)
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Парадокс веществ-разобщителей
Парадокс веществ-разобщителей Тот факт, что окисление может быть отключено от фосфорилирования, впервые описан при изучении брожения. Если сбраживать сахар в среде, где фосфат (Н3РО4) заменен на арсенат (H3AsO4), то брожение идет с большей скоростью, но без образования АТФ.
ЧТО ТАКОЕ ГЕНОМ?
ЧТО ТАКОЕ ГЕНОМ? Вопросы вечны, ответы обусловлены временем. Е. Чаргафф В диалоге с жизнью важен не ее вопрос, а наш ответ. М. И. Цветаева С самого начала определимся, что мы здесь будем подразумевать под словом геном. Сам этот термин впервые был предложен в 1920 году немецким
7. Парадокс Симпсона
7. Парадокс Симпсона Еще одна замечательная хитрость такого рода называется парадоксом Симпсона. Суть этого парадокса в том, что при соблюдении определенного набора условий частота встречаемости альтруистов в группе популяций будет расти, несмотря на то, что внутри
1.5. Лабильный геном
1.5. Лабильный геном Традиционные представления о стабильности геномов, сложившиеся в рамках классической генетики, сильно пошатнулись после открытия мобильных (мигрирующих) генетических элементов (МГЭ). МГЭ – это структуры, которые могут перемещаться в пределах генома
Парадокс оленей: отец силен, а дочь слабая
Парадокс оленей: отец силен, а дочь слабая «Почти как отец» — подобная характеристика радует в детском возрасте, но для дочери, по мере взросления, такой отзыв становится не совсем приятен. Кому может понравиться женщина с широкими плечами, сильным подбородком, низким
2.3. Временной парадокс
2.3. Временной парадокс Каким образом результат (событие, которое наступит в будущем) может детерминировать текущую активность, быть её причиной? Решением этого «временного парадокса» была разработка представления об «информационном эквиваленте результата», о модели
Геном неандертальца[53]
Геном неандертальца[53] Еще совсем недавно пределом мечтаний для палеогенетиков было выделение из древних костей митохондриальной ДНК. Эта небольшая часть генома, передающаяся по материнской линии, присутствует в каждой клетке в сотнях копий, к тому же она имеет
Глава 96. Парадокс Ферми (XV)
Глава 96. Парадокс Ферми (XV) Сообразительному Читателю уже не нужны пояснения Автора относительно номера этой главы. Читатель уверен, что 96 — это своеобразная кода, возвращение к началу, символ описанных выше цифровых симметрий. Или попытка Автора придать своему нынешнему
Глава 5. Парадокс гениев
Глава 5. Парадокс гениев Гениальность – что это такое? Великий дар, заслуженная награда или же патология? А может быть, гениальный ум – это компенсация за физические недостатки или издержи развития? Как ни парадоксально, но многие гении имели серьезные проблемы со
Глава 96. Парадокс Ферми (XV)
Глава 96. Парадокс Ферми (XV) Сообразительному Читателю уже не нужны пояснения Автора относительно номера этой главы. Читатель уверен, что 96 – это своеобразная кода, возвращение к началу, символ описанных выше цифровых симметрий. Или попытка Автора придать своему
ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ И ИЗМЕРЕНИЯ ИХ ЗНАЧЕНИЙ
ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ И ИЗМЕРЕНИЯ ИХ ЗНАЧЕНИЙ «Физические константы» представляют собой числа, которые ученые используют в своих вычислениях. В отличие от математических констант вроде числа ?, значения констант различных природных явлений не могут
Cамый большой парадокс лингвистики
Cамый большой парадокс лингвистики «…Никто поначалу не обращал внимания на этих пришельцев. Слишком хрупкие, чтобы в одиночку охотиться на крупную дичь. Слишком уязвимые, чтобы противостоять нам в единоборстве – их длинные шеи ломались под натиском наших мощных рук. Их
Глава 14 Первый геном человека
Глава 14 Первый геном человека Перспектива того, что тебя опередят в научной гонке, обычно вызывает отчаяние и безумную надежду – а вдруг повезет, и твой конкурент завтра помрет. Иной раз хочется просто все бросить, но тогда годы тяжелого труда будут потрачены
Глава 8 Парадокс измены
Глава 8 Парадокс измены Мы не удивимся, если окажется, что в этот момент вы чешете затылок и спрашиваете себя: «Раз мы так зависим друг от друга и до смерти боимся расстаться, почему же отношения заканчиваются? И как объяснить измену жены или мужа?» Эти два интереснейших