Механика развития и менделевская генетика

We use cookies. Read the Privacy and Cookie Policy

Механика развития и менделевская генетика

К концу XIX в. ощущалась все большая напряженность во взаимоотношениях между двумя главными философскими подходами к биологии - Аллен (Allen) называет это расхождением между натуралистами и экспериментаторами. Натуралистов традиционно интересовал организм как целое, его строение и его приспособленность. Их методом было наблюдение. Следуя за Дарвином, ученые этого направления собирали данные, подтверждающие эволюцию, и были глубоко погружены в распутывание эволюционной истории ныне живущих и вымерших организмов. Решающую роль в их исследованиях играли изучение морфологии и наблюдения за эмбриональным развитием.

Экспериментаторов меньше интересовал организм как целое или его морфология; они сосредоточили внимание на лабораторном изучении отдельных аспектов функций, поддающихся анализу. В основе экспериментального подхода к биологии лежат два главных допущения. Первое из них состоит в том, что функцию изолированного органа, клетки или фермента, наблюдаемую в лаборатории, можно экстраполировать на живой организм. Согласно второму допущению, экспериментально вызванные нарушения системы могут дать информацию о ее нормальной функции. Экспериментаторы стремились превратить биологию в точную науку по образу и подобию химии и физики. Физиология и биохимия, иллюстрирующие экспериментальное направление в биологии, в конце XIX в. добились грандиозных успехов и могли бы служить примером для эмбриологии. В этот период господства взглядов Геккеля и его биогенетического закона эмбриология, натуралистическая по своим традициям и бывшая верным солдатом службы филогении, оказалась готовой перейти в другой лагерь и превратиться в экспериментальную науку со своими собственными задачами и подходами. Первый настоящий методологический вызов представлениям Геккеля бросил в 1874 г. Вильгельм Гис (Wilhelm His), искавший непосредственные механические причины онтогенеза в физических свойствах протоплазмы оплодотворенного яйца и в условиях той среды, в которой оно развивается. Эти работы вызвали сильные нападки и насмешки со стороны Геккеля и его последователей; во всеобщем стремлении применять биогенетический закон многие их просто игнорировали. В 1888 г. доведенный до раздражения Гис писал:

«Это противодействие применению основных законов науки к вопросам эмбриологии едва ли было бы понятным, если бы оно не упиралось в догматизм. Единственным допустимым объяснением развития живых существ считается наследственность, а любое другое объяснение, имеющее иную основу, отвергается. Между тем считать, что наследственность способна создавать живые существа без участия механических факторов - всего лишь ненаучная мистика».

Другие эмбриологи также начинали проводить эксперименты с целью проверки механистических гипотез. В 1883 г. Пфлюгер (Pfluger) изучал роль силы тяжести в определении плоскости дробления оплодотворенного яйца. Его заключение, что плоскость дробления определяется силой тяжести, было неверным, однако здесь нас интересует не это. Значение его работ состоит в том, что он применил экспериментальный подход с тем, чтобы выделить и изучить один определенный механический аспект развития. Продвижение экспериментальных исследований ускорилось после того, как в 1887 г. Шабри (Chabry), работавший на оболочниках, а в 1888 г. Ру (Roux), работавший на лягушках, опубликовали результаты экспериментов, в которых они один из бластомеров двуклеточного зародыша разрушали уколом иглы и наблюдали за развитием оставшегося бластомера.

Бластомеры были не просто жертвами праздного любопытства. Целью экспериментов с их разрушением была проверка предположения, что прогрессивная и дивергентная специализация клеток развивающегося зародыша вызывается неравномерным распределением между ними хромосом, в результате чего разные клетки зародыша оказываются различными вследствие различий в тех наследственных частицах, которые они содержат. Ру полагал, что он продемонстрировал правильность гипотезы о строгой мозаичности развития, однако его взгляды подверг сомнению Дриш (Driesch), который в 1892 г. провел эксперименты, показавшие, что каждый из разделенных бластомеров дробящихся яиц морского ежа развивается в полноценного зародыша.

К 1894 г. целое поколение эмбриологов, осознавших успешность экспериментального подхода в физиологии и биохимии и огорченных отсутствием точности в филогенетических спекуляциях, было готово откликнуться на призыв Ру к созданию новой науки - механики развития. В 1894 г. Ру опубликовал очень подробный проспект о задачах этой науки во вводной статье к новому журналу «Archiv fur Entwicklungsmechanik der Organismen», который он основал для публикации сообщений об исследованиях в области механики развития. Под механикой Ру понимал причинность; он писал: «...задачей механики развития должно быть сведение формообразовательных процессов развития к лежащим в их основе законам природы». Ру имел в виду не только элементарную химию и физику изучаемой системы, но и лежащие в ее основе биологические механизмы. Он отмечал, что «...все крайне разнообразные структуры многоклеточных организмов можно свести к нескольким modi operandi - росту клеток, их исчезновению, делению, миграции, активному формированию, элиминации и качественному метаморфозу». Программа, созданная Ру, призывала к изучению роли этих процессов в событиях, составляющих развитие, и к детальному исследованию самих этих клеточных событий.

Но к истинной революции в эмбриологии привело настойчивое утверждение Ру, что, хотя некоторые представления о механизмах развития можно вывести из наблюдений, доказать их существование можно только экспериментальным путем. Отдельные компоненты развивающейся системы можно изучать путем их «выделения, перемещения, уничтожения, ослабления» и наблюдать затем, какое влияние это оказывает на нормальный процесс. Созданная Ру механика развития преобразовала эмбриологию и привела к тому, что вопросы филогении стали играть все меньшую и меньшую роль в деятельности эмбриологов, занимающихся функциональным анализом развития. Механистический и редукционистский подход сулил реальную возможность разрешить проблемы развития, дав им объяснение на молекулярном уровне. В 1890-х годах у многих биологов появилась склонность к редукционизму. Как раз в это время, в 1896 г., Эдуард Бухнер (Eduard Buchner) опубликовал эксперименты, показавшие, что брожение, которое считали биологическим процессом, неотделимым от живой дрожжевой клетки, можно получить и вне клетки, при помощи изолированных ферментов. Работа Бухнера была достаточно убедительной, а о значении, которое она имела в то время, можно судить по тому, что Бухнер получил за нее в 1907 г. Нобелевскую премию по химии. Ферменты послужили прекрасной моделью, позволившей представить жизнь как сложный химический процесс. Оппенгеймер и Митчел (Oppenheimer, Mitchel), например, в своей книге «Ферменты и их действие», опубликованной в 1901 г., пространно обсуждали химическую природу и действие ферментов, а также различные основные их классы. Они рассматривали, между прочим, и ферменты, обнаруженные в зародышах. Молекулярные механизмы в эмбриологии затрагивают в своих работах Дриш (Driesch, 1894) и Уилсон (E.B.Wilson, 1898, 1904).

От наследственности и рекапитуляции, занимавших центральное место в умах эмбриологов, внимание переключалось на процесс, посредством которого происходит индивидуальное развитие организма. Это новое отношение к проблеме удачно резюмировал Уитмэн (С. О. Whitman) - один из основателей американской эмбриологии и первый директор Лаборатории биологии моря в Вудс-Холе; в 1895 г. он писал:

«...нам больше не нужна филогенетическая Ahnengallerie (портретная галерея предков)... Нам ничего не дает понимание того, что глаза у нас есть, потому что они имелись у наших предков. Если наши глаза похожи на их глаза, то это объясняется не генеалогическими связями, а тем, что развитие молекулярной основы зачатков этих глаз происходило в сходных условиях».

Триумф механики развития вызвал внезапный и полный разрыв между эмбриологией и эволюцией, и, как мы увидим, в нем уже содержались семена еще и второго разрыва - между эмбриологией и генетикой. Любопытно, что эмбриологи не доказали ошибочности биогенетического закона, и в период расцвета механики развития они, в сущности, и не пытались этого сделать: эмбриологи были увлечены новыми проблемами, не связанными с биогенетическим законом. Лишь по прошествии целого поколения Гарстанг (Garstang) и де Бер (de Beer) вернулись к геккелевской рекапитуляции и доказали на эмбриологической основе ее непригодность в качестве универсального механизма эволюции. Механика развития не отрицала основу биогенетического закона. В сущности, некоторые аспекты рекапитуляции нетрудно было бы объяснить в механистической манере в полном согласии с новым подходом. Наилучшим примером этого служит высказанная Клайненбергом (Kleinenberg, 1886) мысль, что такие, казалось бы, лишенные функции эмбриональные структуры, как хорда или трубчатая закладка сердца у позвоночных, считавшиеся простыми примерами рекапитуляции, возможно, имеют жизненно важное значение для развития зародыша, принимая участие в формировании более поздних структур. Он писал:

«С этой точки зрения многие рудиментарные органы предстают в ином свете. Их упорное появление вновь и вновь на протяжении длинных филогенетических рядов было бы трудно понять, будь они в самом деле всего лишь напоминаниями об ушедших в прошлое и забытых стадиях. Их значение в процессе индивидуального развития может в действительности оказаться гораздо большим, чем принято считать... Под влиянием этих органов, ныне ставших рудиментарными, или с их помощью возникают и развиваются постоянные части зародыша; когда эти части достигают определенной самостоятельности, промежуточный орган, выполнивший свою миссию, может уйти в отставку».

Мысль Клайненберга по существу своему верна. Такие процессы действительно существуют; они были подвергнуты экспериментальному изучению и позволили объяснить большую часть тех возникающих в ходе развития признаков, которые кажутся рекапитуляционными.

В конечном счете роковые слабости биогенетического закона заключались в его зависимости от ламарковской теории наследственности и в его непременном условии, что новая эволюционная ступень может быть достигнута только как добавление к взрослой стадии непосредственного предка. Вторичное открытие и развитие менделевской генетики на рубеже двух столетий покажет, что в сущности биогенетический закон - это всего лишь иллюзия.

Мендель проводил свои общеизвестные эксперименты по скрещиванию на горохе Pisum sativum и опубликовал их результаты в 1865 г. Научная среда того времени, однако, еще не была готова к тому, чтобы признать его теорию наследственности, и его работа не привлекла внимания. К началу 90-х годов широкое использование микроскопа и его применение для исследования строения клеток и их компонентов, а в особенности ядра и хромосом (W. S. Sutton, Nettie Stevens, ?. ?. Wilson), подготовило почву для революции в биологии. Первым шагом этой революции было упомянутое выше вторичное открытие законов Менделя Гуго де Фризом (Н. de Vries), K. Корренсом (С. Correns) и Э. фон Чермаком (Е. von Tschermak), произошедшее в 1900 г. Все они провели эксперименты по скрещиванию, сходные с экспериментами Менделя, и полученные ими результаты соответствовали тем, о которых Мендель сообщил на 35 лет раньше. Используя разные виды растений, де Фриз, Корренс и Чермак подчеркнули правильность законов Менделя и их всеобщую применимость. Было установлено, что гены дискретны и, судя по их поведению, имеют корпускулярную природу. Они передаются из поколения в поколение вполне предсказуемым и повторяющимся образом, и, что самое главное, слияния признаков не происходит. Гены встречаются в доминантной и рецессивной формах и определяют различные и контрастирующие признаки, или фенотипы. На эти свойства генов, по-видимому, не оказывают влияния ни условия среды, ни объединение различных генов в гибридных индивидуумах. Скрытый рецессивный признак может вновь проявиться спустя несколько поколений у определенной доли потомков в совершенно таком же виде, в каком он существовал до гибридизации.

Вторым шагом в биологической революции были работы Саттона (W. S. Sutton) и Бовери (Т. Boveri), которые в 1903 г. независимо друг от друга опубликовали данные, указывающие на сходство в поведении генов и хромосом. Эта «хромосомная теория наследственности» нашла поборника в лице Моргана (Morgan), который сначала был ее противником, а затем стал ее самым влиятельным сторонником и основателем американской школы современной генетики. Морган, специализировавшийся в области экспериментальной эмбриологии, перенес присущий этой области механистический и экспериментальный подход на изучение наследственности. Кульминационной точки его исследования достигли в 1915 г., когда он опубликовал вместе со своими учениками книгу «Механизмы менделевской наследственности». Общее признание взглядов Менделя на наследственность было, конечно, несовместимо с ламаркизмом, а следовательно, серьезно противоречило биогенетическому закону.

Последовало еще одно событие, способствовавшее утрате веры в рекапитуляцию. В 1893 г. Август Вейсман (August Weismann) опубликовал свою «Теорию зародышевой плазмы». Он обратил внимание, что у зародышей многих животных на ранних стадиях развития обособляется группа клеток, которые у взрослого организма дают начало репродуктивным тканям. Эти репродуктивные, или зародышевые, клетки отделены поэтому от остального организма, или сомы, и именно одни лишь эти клетки передают следующему поколению детерминанты (гены). Поэтому, для того чтобы зародышевые клетки могли в соответствии со схемой получить признаки для передачи следующим поколениям, они должны каким-то образом общаться с сомой. В 1909 г. Кастл и Филлипс (W. Е. Castle и J. С. Phillips) поставили эксперимент с целью проверки такой возможности. Они скрещивали две линии морских свинок белую и черную. Это были чистые линии и при скрещивании давали потомков в соотношениях, соответствующих законам Менделя. Скрещивания показали также, что черная окраска доминирует над белой. Затем Кастл и Филлипс пересадили яичники от черных самок белым, а от белых - черным. По достижении зрелости этих самок скрещивали с чистопородными белыми самцами. Полученное потомство соответствовало типу яичников, имевшихся у самок: если яичники происходили от белой самки, то все потомки были белыми, несмотря на то что яичник находился в теле черной самки. Точно так же, если яичник был трансплантирован от черного донора, то все потомки были черными. Такая автономия клеток зародышевой линии в сочетании с чистотой и постоянством гена, определяющего данный признак, конечно, противоречит представлению о наследовании приобретенных признаков.

Последний удар биогенетическому закону был нанесен тогда, когда стало ясно, что морфология и морфологические адаптации имеют важное значение не только для взрослого организма, но и для всех стадий его онтогенеза. Работы де Бера (de Beer), Гарстанга (Garstang) и Гексли, проведенные в первой половине XX в., сыграли решающую роль в становлении этой идеи. Если морфология развивающегося организма имеет такое же важное, а может быть, и еще более важное значение, как его морфология во взрослом состоянии, то это трудно согласовать с геккелевской моделью эволюции. В совокупности менделевская генетика, обособленность клеток зародышевой линии и важность морфологических признаков на всем протяжении развития положили конец рекапитуляции sensu stricto.

В то время как экспериментальная эмбриология перестала заниматься эволюционными проблемами, генетика, напротив, оказалась в самой гуще распрей по проблемам эволюции. С развитием менделевской генетики появилась надежда дать новое объяснение дарвиновских принципов. Экспериментальная парадигма школы Моргана была привлечена к изучению эволюционных проблем, и начался расцвет основанной Фишером, Холдейном и Райтом (R. A. Fisher, J. В. S. Haldane и S. Wright) школы популяционной генетики. Эти ученые видели в законах и соотношениях, установленных Менделем, количественный и математический подход к эволюции. Новая научная школа оперировала группами или популяциями организмов в общем так же, как школа Моргана оперировала отдельными особями.