Пространственная организация и происхождение формы

We use cookies. Read the Privacy and Cookie Policy

Пространственная организация и происхождение формы

Главная проблема, стоящая перед биологами, занимающимися изучением развития, - объяснить механику процессов, в результате которых из одноклеточной зиготы образуется морфологически более сложный многоклеточный взрослый организм. С генетической точки зрения это влечет за собой необходимость объяснить, каким образом закодированная в ДНК одномерная информация реализуется в трехмерной структуре организма. Программа развития слагается из связанных между собой явлений двух типов - клеточной дифференцировки и становления пространственной структуры. Возможность отделить друг от друга эти два аспекта онтогенеза нетрудно продемонстрировать на довольно простом примере. Если произвести биохимический анализ правой и левой рук человека и перечислить все образующие их мышцы, сухожилия, кости и т. п., то они окажутся идентичными. Между тем одного взгляда на эти два органа достаточно, чтобы убедиться в том, что они не идентичны. Одна рука не может заменить другую. Еще яснее это видно при сравнении руки и ноги. В настоящей главе мы и попытаемся выяснить, каким образом возникают эти различия, т.е. как происходит развитие пространственной структуры и формы. В конечном счете эволюцию и морфологии, и клеточной дифференцировки следует понимать именно в контексте становления пространственной структуры.

Один подход к изучению процесса онтогенеза был выдвинут в 40-х годах Уоддигтоном (Waddington). В процессе своего развития клетка проходит то, что Уоддингтон назвал эпигенетическим ландшафтом. Эпигенетический ландшафт (рис. 9-1) представляет собой равнину, изрезанную рядом долин. Долины берут начало на возвышенном конце равнины и тянутся вниз; при этом они постепенно расходятся, заканчиваясь каждая в своей особой точке на нижнем конце равнины. Клетка движется от верхнего конца равнины к нижнему по системе долин. В каждой точке ветвления клетка должна принять некое морфогенетические решение, в результате чего ее потенции к развитию ограничиваются. Находясь на верхнем конце ландшафта, клетка теоретически может достигнуть каждой из особых конечных точек. Однако, после того как она примет свое первое решение, например в первой точке ветвления, ей останется доступным только одно из подмножеств конечных точек. Клетка начинает свой путь в состоянии тотипотентности, но постепенно ее возможности становятся все более и более ограниченными в результате принимаемых ею решений. Уоддингтон назвал этот процесс канализацией. По своим общим свойствам процесс канализации приложим как к клеточной дифференцировке, так и к становлению пространственной структуры. Точки принятия решений - развилки долин - подвержены воздействиям внешних сил, например гормональных стимулов или индукции, а решение зависит от обусловленной генетически реакции клетки на данный стимул. Как станет ясно из дальнейшего, наблюдаемые нами решения, которые клетка принимает в процессе онтогенеза, относятся к типу «или-или», и их можно рассматривать как ряд двоичных решений типа «направо-налево». Расстояние от верхнего конца ландшафта к нижнему соответствует времени развития. Эту модель можно использовать как для мозаичного, так и для регуляционного развития, просто перемещая точки ветвления долин либо к верхнему, либо к нижнему концу холма соответственно. Хотя данная модель в том виде, в каком она здесь описана, позволяет представить себе процесс развития, она не объясняет его. Кроме того, эта модель статична, поскольку в ней формально не представлен процесс клеточного деления. Тем не менее идея о ряде канализирующих событий очень важна и отражается, например, в развитии конечности позвоночных, в частности в детерминации осей, определяющих отличие правой конечности от левой.

Рис. 9-1. Эпигенетический ландшафт Уоддингтона. Шарик на вершине изображает клетку, а долины под ним - различные пути развития, по которым она может пойти (Waddington, 1966).