Литература
Ahmad K. and Golic K.G., 1998. The transmission of fragmented chromosomes in Drosophila melanogaster. Genetics 148: 775-792.
Ahmad K. and Henikoff S., 2001. Centromeres are specialized replication domains in heterochromatin. /. Cell Biol 153: 101-110.
Ahmad K. and Henikoff S., 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191-1200.
Aladjem M.I. and Fanning E., 2004. The replicon revisited: An old model learns new tricks in metazoan chromosomes. EMBO Rep. 5: 686-691.
Amor D.J. and Choo K.H., 2002. Neocentromeres: Role in human disease, evolution, and centromere study. Am. J. Hum. Genet. 71: 695-714.
Baarends W.M., Wassenaar E., van der Laan R., Hoogerbrugge J., Sleddens-Linkels E., Hoeijmakers J.H., de Boer P., and Grootegoed J.A., 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 25: 1041-1053.
Bassing C.H., Chua K.F., Sekiguchi J., Suh H., Whitlow S.R., Fleming J.C., Monroe B.C., Ciccone D.N., Yan C., et al., 2002. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl Acad. Sci. 99: 8173-8178.
Baum M., Ngan V., and Clarke L., 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol. Cell 5: 747-761.
Bean C.J., Schaner C.E., and Kelly W.G., 2004. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat. Genet. 36: 100-105.
Bennett M.D., Dover G.A., and Riley R., 1974. Meiotic duration in wheat genotypes with or without homoeologous meiotic chromo
some pairing. Proc. R. Soc. Lond. B Biol. Sci. 187: 191-207.
Beukeboom L.W. and Werren J.H., 1993. Deletion analysis of the selfish B chromosome, Paternal Sex Ratio (PSR), in the parasitic wasp Nasonia vitripennis. Genetics 133: 637-648.
Biessmann H. and Mason J.M., 2003. Telomerase-independent mechanisms of telomere elongation. Cell. Mol. Life Sci. 60: 2325-2333.
Black B.E., Foltz D.R., Chakravarthy S., Luger K., Wbods V.L., Jr., and Cleveland D.W., 2004. Structural determinants for generating centromeric chromatin. Nature 430: 578-582.
Blasco M.A., 2005. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 6: 611-622.
Bloom K., Hill A., Kenna M., and Saunders M., 1989. The structure of a primitive kinetochore Trends Biochem. Sci. 14: 223-227.
Blower M.D. and Karpen G.H., 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3: 730-739.
Blower M.D., Sullivan B.A., and Karpen G.H., 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2: 319-330.
Carroll C.W. and Straight A.F., 2006. Centromere formation: From epigenetics to self-assembly. Trends Cell Biol. 16: 70-78.
Celeste A., Petersen S., Romanienko P.J., Femandez-Capetillo O., Chen H.T., SedelnikovaO.A., Reina-San-Martin B., CoppolaV., Meffre E., Difilippantonio M.J.. et al., 2002. Genomic instability in mice lacking histone H2AX. Science 296: 922-927.
Cenci G., Siriaco G., Raffa G.D., Kellum R., and Gatti M., 2003. The Drosophila HOAP protein is required for telomere capping. Nat. Cell Biol. 5: 82-84.
Clarke L., Amstutz H., Fishel B., and Carbon J., 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. 83: 8253-8257.
Cleveland D.W., Mao Y., and Sullivan K.F., 2003. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell 112: 407-421.
Collins K.A., Furuyama S., and Biggins S., 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/ CENP-A histone H3 variant. Curr. Biol. 14: 1968-1972.
Cryderman D. E., Morris E., Biessmann H., Elgin S.C., and Will rath L.L., 1999. Silencing at Drosophila telomeres: Nuclear organization and chromatin structure play critical roles. EMBO J. 18: 3724-3735.
Cullen C.F., Brittle A.L., Ito T., and Ohkura H., 2005. The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster. J. Cell Biol. 171: 593-602.
Dawe R.K. and Hiatt E.N., 2004. Plant neocentromeres: Fast, focused, and driven. Chromosome Res. 12: 655-669.
De La Fuente R., 2006. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 292: 1-12.
de Saint Phalle B. and Sullivan W., 1996. Incomplete sister chromatid separation is the mechanism of programmed chromosome elimination during early Sciara coprophila embiyogenesis. Development 122: 3775-3784.
DemburgA.F., 2001. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. J. Cell Biol. 153: F33-38.
Demburg A.F., Sedat J.W., and Hawley R.S., 1996. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86: 135-146.
Dobson S.L. and Tanouye M.A., 1998. Evidence for a genomic imprinting sex determination mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics 149: 233-242.
Donaldson KM., Lui A., and Karpen G.H., 2002. Modifiers of terminal deficiency-associated position effect variegation in Drosophila. Genetics 160: 995-1009.
Dvorak J. and Lukaszewski A.J., 2000. Centromere association is an unlikely mechanism by which the wheat Phi locus regulates metaphase I chromosome pairing between homoeologous chromosomes. Chromosoma 109: 410-414
Fanti L., Giovinazzo G., Berloco M., and Pimpinelli S., 1998. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2: 527-538.
Ferguson B.M. and Fangman W.L., 1992. A position effect on the time of replication origin activation in yeast. Cell 68: 333-339.
Femandez-Capetillo O., Lee A., Nussenzweig M., and Nussenzweig A., 2004. H2AX: The histone guardian of the genome. DNA Repair 3: 959-967.
Ferreri G.C., Lise insky D.M., Mack J.A., Eldridge M.D., and O’Neill R.J., 2005. Retention of latent centromeres in the mammalian genome. J. Hered. 96: 217-224.
Fnedberg E., Walker G.. and Siede W.. 1995. DNA repair and mutagenesis. ASM Press, Washington D.C.
Ganetzky B., 1977. On the components of segregation distortion in Drosophila melanogaster. Genetics 86: 321-355.
Garcia-Cao M., O’Sullivan R., Peters A. H., Jenuwein T., and Blasco M.A., 2004. Epigenetic regulation of telomere length in mammalian cells by the Suv39hl and Suv39h2 histone methyltransferases. Nat. Genet. 36: 94-99.
Goday C. and Ruiz M.F., 2002. Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J. Cell Sci. 115: 4765-4775.
Grell R.F., 1976. Distributive pairing. In The genetics and biology of Drosophila (ed. E. Novitski and M. Ashbumer), pp. 436-483. Academic Press, New York.
Griffiths S., Sharp R., Foote T.N., Bertin I., Wanous M., Reader S., Colas I., and Moore G., 2006. Molecular characterization of Ph 1 as a major chromosome pairing locus in polyploid wheat. Nature 439: 749-752.
Hall A.E., Kettler G.C., and Preuss D., 2006. Dynamic evolution at pericentromeres. Genome Res. 16: 355-364.
Hassa P.O. and Hottiger M.O., 2005. An epigenetic code for DNA damage repair pathways? Biochem. Cell Biol. 83: 270-285.
Hawley R.S., Irick H., Zitron A.E., Haddox D.A., Lohe A., New C, Whitley M.D., Arbel T., Jang J., McKim K., and Childs G., 1993. There are two mechanisms of achiasmate segregation in Drosophda females, one of which requires heterochromatic homology. Dev. Genet. 13: 440-467
Heun P., Erhardt S., Blower M.D., Weiss S., Skora A.D., and Karpen G.H., 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10: 303-315.
Huyen Y., Zgheib O., Ditullio R.A., Jr., Gorgoulis V.G., Zacharatos P., Petty T.J., Sheston E.A., Mellert H.S., Stavridi E.S., and Halazonetis T.D., 2004. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406-411.
Hynes M.J. and Todd R.B., 2003. Detection of unpaired DNA at meiosis results in RNA-mediated silencing. Bioessays 25: 99-103.
Ivanovska I., Khandan T., Ito X, and Orr-Weaver T.L., 2005. A histone code in meiosis: The histone kinase, NHK-1, is required for proper chromosomal architecture in Drosophila oocytes. Genes Dev., 19: 2571-2582.
Joseph I., Jia D., and Lustig A.J., 2005. Ndjlp-dependent epigenetic resetting of telomere size in yeast meiosis. Curr. Biol. 15: 231-237.
Karpen G.H. and Spradling A.C., 1992. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dpi 187 by single P element insertional mutagenesis. Genetics 132: 737-753.
Karpen G.H., Le M.H., and Le H., 1996. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 213: 118-122.
Kemp B., Boumil R.M., Stewart M.N., and Dawson D.S., 2004. A role for centromere pairing in meiotic chromosome segregation. Genes Dev. 18: 1946-1951.
Kusano A., Staber C., Chan H.Y., and Ganetzky B., 2003. Closing the (Ran)GAP on segregation distortion in Drosophila. Bioessays 25: 108-115.
Kuril B.L., Seong K.Y., and Aramayo R., 2003. Unpaired genes do not silence their paired neighbors. Curr. Genet. 43: 425-432.
Lai S.R., Phipps S.M., Liu L., Andrews L.G., and Tollefsbol T.O., 2005. Epigenetic control of telomerase and modes of telomere maintenance in aging and abnormal systems. Front. Biosci. 10: 1779-1796. Lam A.L., Boivin C.D., Bonney C.F., Rudd M.K., and Sullivan B.A., 2006. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc. Natl. Acad. Sci. 103: 4186-4191.
Lee D.W., Pratt R.J., McLaughlin M., and Aramayo R., 2003. An aigonaute-like protein is required for meiotic silencing. Genetics 164: 821-828.
Lee D.W., Seong K.Y., Pratt R.J., Baker K., and Aramayo R., 2004. Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 167: 131-150.
Lo A.W., Magliano D.J., Sibson M.C., Kalitsis P., Craig J.M., and Choo K.H., 2001. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11: 448-457.
Louis EJ. and Vershinin A.V., 2005. Chromosome ends: Different sequences may provide conserved functions. Bioessays 21: 685-697
Lue N.F., 2004. Adding to the ends: What makes telomerase proces-sive and how important is it? Bioessays 26: 955-962.
Luo M.C., Dubcovsky J., and Dvorak J., 1996. Recognition of homeology by the wheat Phi locus. Genetics 144: 1195-1203.
Maggert K.A. and Karpen G.H., 2001. Neocentromere formation occurs by an activation mechanism that requires proximity to a functional centromere. Genetics 158: 1615-1628.
Maine E.M., Hauth J.. RatliffX Vought V.E., SheX,, and Kelly W.G., 2005. EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired dna during C. elegans meiosis. Curr. Biol. 15: 1972-1978.
Malik H.S. and Henikoff S., 2002. Conflict begets complexity: The evolution of centromeres. Curr. Opin. Genet. Dev. 12: 711-718.
McKee B.D., 1998. Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr. Top. Dev. Biol. 31: 77-115.
Mellone B.G. and Allshire R.C., 2003. Stretching it: Putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13: 191-198.
Miller K.M. and Cooper J.P., 2003. The telomere protein Tazl is required to prevent and repair genomic DNA breaks. Mol. Cell 11: 303-313.
Nakaseko Y., Kinoshita N., and Yanagida M., 1987. Anovel sequence common to the centromere regions of Schizosaccharomyces pombe chromosomes. Nucleic Acids Res. 15: 4705-4715.
Nakatani Y., Ray-Gallet D., Quivy J.R, Tagami H., and Almouzni G., 2004. Two distinct nucleosome assembly pathways: Dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes. Cold Spring Harbor Symp. Quant. Biol. 69: 273-280.
Nimmo E.R., Pidoux A.L., Perry P.E., and Allshire R.C., 1998. Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392: 825-828.
Nonaka N., Kitajima X, Yokobayashi S., Xiao G., Yamamoto M., Grewal S.I., and Watanabe Y, 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HPl in fission yeast. Nat. Cell Biol. 4: 89-93.
Ogino K., Elirota K., Matsumoto S., TakedaX., Ohta K., Arai K.I., and Masai H., 2006. Hskl kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc. Natl. Acad. Sci. 103: 8131-8136.
Pasero P., Bensimon A., and Schwob E., 2002. Single-molecule analysis reveals clustering and epigenetic regulation of replication ongins at the yeast rDNA locus. Genes Dev. 16: 2479-2484.
Perrini B., Piacentini L., Fanti L., Altieri F., Chichiarelli S., Berloco M., Turano C., Ferraro A., and Pimpinelli S., 2004. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol. Cell 15: 467-476.
Pidoux A.L. and Allshire R.C., 2004. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12: 52N534.
Prasanth S.G., Mendez J., Prasanth K.V., and Stillman B., 2004. Dynamics of pre-replication complex proteins during the cell division cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 7-16.
Pratt R.J., Lee D.W., and Aramaya R., 2004. DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora. Genetics 168: 1925-1935.
Reddy K.C. and Villeneuve A.M., 2004. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118: 439-452.
Rhoades M.M. and Dempsey E., 1966. The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize. Genetics 53: 989-1020.
Rudd M.K., Mays R.W., Schwartz S., and Willard H.F., 2003. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol. Cell Biol. 23: 7689-7697.
Sadaie M., Naito X., and Ishikawa E., 2003. Stable inheritance of telomere chromatin structure and function in the absence of telomenc repeats. Genes Dev. 17: 2271-2282.
Sandler L. and Hiraizumi Y., 1959. Meiotic drive in natural populations of Drosophila melanogaster. II. Genetic variation at the Segregation-distorter locus. Proc. Natl. Acad. Sci. 45: 1412-1422.
Sharp J.A., Franco A.A., Osley M.A., and Kaufman P.D., 2002. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16: 85-100.
Shelby R.D., Monier K., and Sullivan K.E, 2000 Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151: 1113-1118.
Shiu P.K. and Metzenberg R.L., 2002. Meiotic silencing by unpaired DNA: Properties, regulation and suppression. Genetics 161: 1483-1495.
Steiner N.L. and Clarke L., 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865-874.
Sullivan B. and Karpen G., 2001. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154: 683-690.
Sullivan B.A. and Karpen G.H., 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11. 1076-1083.
Sullivan B.A. and Willard H.F., 1998. Stable dicentric X chromosomes with two functional centromeres. Nat. Genet., 20: 227-228.
Tsubouchi T. and Roeder G.S., 2005. A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308: 870-873.
Turner J.M., Mahadevaiah S.K., Femandez-Capetillo O., Nussenzweig A., XuX., Deng C.X., and Buigoyne P.S., 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37: 41-47.
Watanabe Y., 2005. Sister chromatid cohesion along arms and at centromeres. Trends Genet. 21: 405-412.
Weinreich M., Palacios DeBeer M.A., and Fox C.A., 2004. The activities of eukaryotic replication origins in chromatin. Biochim. Biophys.Acta 1677: 142-157.
Werren J.H., Nur U., and Eickbush D., 1987. An extrachromosomal factor causing loss of paternal chromosomes. Nature 327: 75-76.
Wu H.Y. and Burgess S.M., 2006. Ndjl, a telomere-associated protein, promotes meiotic recombination in budding yeast. Mol. Cell Biol. 26: 3683-3694.
Yan H., Jin W., Nagaki K., Tian S., Ouyang S., Buell C.R., Talbert P.B., Henikoff S., and Jiang J., 2005. Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17: 3227-3238.
Yoda K., Ando S., Monshita S., Houmura K., Hashimoto K., Takeyasu K., and Okazaki X, 2000. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl. Acad. Sci. 97: 7266-7271.
Yu H.G., Hiatt E.N., Chan A., Sweeney M., and Dawe R.K., 1997. Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139: 831-840.
Alekseyenko A.A. and Kuroda M.I., 2004. Filling gaps in genome organization. Science 303: 1148-1149.
Baarends W.M., Wassenaar E., van der Laan R., Hoogerbrugge J., Sleddens-Linkels E., Hoeijmakers J.H., de Boer P., and Grootegoed J.A., 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 25: 1041-1053.
Baugh L.R.. Hill A.A., Slonim D.K., Brown E.L., and Hunter C.R, 2003. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130: 889-900.
Bean C.J., Schaner C.E., and Kelly W.G., 2004. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat. Genet. 36: 100-105.
Bender L.B., Cao R., Zhang Y., and Strome S., 2004. The MES-2/ MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr. Biol 14: 1639-1643.
Bender L.B., Suth J.. Carroll C.R.. Fong Y., Fingerman I.M.. Cao R., Zhang Y., Briggs S.D., Reinke V., and Strome S., 2006. MES-4, an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development. (In press.)
Carmi I., Kopczynski J.B., and Meyer B.J., 1998. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396: 168-173.
Chu D.S., Dawes H.E., Lieb J.D., Chan R.C., Kuo A.F., and Meyer B.J., 2002. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev. 16: 796-805.
Cowell I.G., Aucott R., Mahadevaiah S.K., Burgoyne P.S., Huskisson N., Bongiomi S., Prantera G., Fanti L., Pimpinelli S., Wu R., et al., 2002. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111: 22-36.
Csankovszki G., McDonel P., and Meyer B.J.. 2004. Recruitment and spreading of the C elegans dosage compensation complex along X chromosomes. Science 303: 1182-1185.
Dawes H.E., Berlin D.S., Lapidus D.M., Nusbaum C, Davis T.L., and Meyer B.J., 1999. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science 284: 1800-1804.
Fong Y., Bender L., Wang W., and Strome S., 2002. Regulation of the different chromatin states of autosomes and X chromosomes in the germline of C. elegans. Science 296: 2235-2238.
Goday C. and Esteban M.R., 2001. Chromosome elimination in sciarid flies. BioEssays 23: 242-250.
Goldstein P. and Slaton D.E., 1982. The synaptonemal complexes of Caenorhabditis elegans: Comparison of wild-type and mutant strains and pachytene karyotype analysis of wild-type. Chromosoma 84: 585-597.
Haack H. and Hodgkin J., 1991. Tests for parental imprinting in the nematode Caenorhabditis elegans. Mol. Gen. Genet. 228: 482-485.
Handel M.A., 2004. The XYbody: a specialized meiotic chromatin domain. Exp. Cell Res. 296: 57-63.
Hansen D., Hubbard E.J.A., and Schedl T., 2004. Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev. Biol. 268: 342-357.
Herrick G. and Seger J., 1999. Imprinting and paternal genome elimination in insects. Results Probl. Cell Differ. 25: 41-71.
Hirano T., 2002. The ABCs of SMC proteins: Two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16: 399-414.
Kelly W.G., Schaner C.E., Demburg A.F., Ho-Lee M., Kim S.K., Villeneuve A.M., and Reinke V., 2002. X-chromosome silencing in the germline of C. elegans. Development 129: 479-492.
Ketel C.S., Andersen E.F., Vargas M.L., Suh J., Strome S., and Simon J.A., 2005. Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol. Cell. Biol. 25: 6857-6868.
Maciejowski J., Ahn J.H., Cipriani P.G., Killian D.J., Chaudhary A.L., Lee J.I., Voutev R., Johnsen R.C., Baillie D.L., Gunsalus K.C., et al., 2005. Autosomal genes of autosomal/X-linked duplicated gene pairs and germ-line proliferation in Caenorhabditis elegans. Genetics 169: 1997-2011.
Maine E.M., Hauth J., Ratliff T., Vought V.E., She X., and Kelly W.G., 2005. EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired DNA during C. elegans meiosis. Curr. Biol. 15: 1972-1978.
Meyer B.J., 1997. Sex determination and X chromosome dosage compensation. In C. elegans II (ed. D.L. Riddle et al.), pp., 209-240. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Meyer B.J., 2000. Sex in the worm counting and compensating X-chromosome dose. Trends Genet. 16: 247-53.
Meyer B.J., 2005. X-chromosome dosage compensation. In Worm-Book, http://www.wormbook.org/chapters/www_dosagecomp/dosage-comp.html.
Nakayashiki H., 2005. RNA silencing in fungi: Mechanisms and applications. FEBS lett. 579: 5950-5957.
Nigon V., 1951. Polyploidie experimentale chez un nematode libre, Rhaditis elegans maupas. Bull. Biol. Fr. Belg. 85: 187-255.
Piano F., Schetter A.J., Mangone M., Stein L., and Kemphues K.J., 2000. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10: 1619-1622.
Powell J.R., Jow M.M., and Meyer B.J., 2005. The T-box transcription factor SEA-1 is an autosomal element of the X:A signal that determines C. elegans sex. Dev. Cell 9: 339-349.
Prahlad V., Pilgrim D., and Goodwin E.B., 2003. Roles for mating and environment in C. elegans sex determination. Science 302: 1046-1049.
Reinke V., Gil I.S., Ward S., and Kazmer K., 2004. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131: 311-323.
Reinke V., Smith H.E., Nance J., Wang J., Van Doren C., Begley R., Jones S.J.M., Davis E.B., Scherer S., Ward S., and Kim S.K., 2000. A global profile of germ line gene expression in C. elegans. Mol. Cell 6: 605-616.
Schedl T., 1997. Developmental genetics of the germ line. In C. elegans //(ed. D.L. Riddle et al.), pp. 241-269. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Shiu P.K., Raju N.B., Zickler D., and Metzenberg R.L., 2001. Meiotic silencing by unpaired DNA. Cell 107: 905-916.
Skipper M., Milne C.A., and Hodgkin J., 1999. Genetic and molecular analysis offox-1, a numerator element involved in Caenorhabditis elegans primary sex determination. Genetics 151: 617-631.
Turner J.M., 2005. Sex chromosomes make their mark. Chromosoma 114: 300-306.
Turner J.M., Mahadevaiah S.K., Femandez-Capetillo O., Nussenzweig A., Xu X., Deng C.X., and Burgoyne P.S., 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37: 41-47.
van Leeuwen F. and Gottschling D.E., 2002. Genome-wide histone modifications: gaining specificity by preventing promiscuity. Curr. Opin. Cell Biol. 14: 756-762.
Wang L., Brown J.L., Cao R., Zhang Y., Kassis J.A., and Jones R.S., 2004. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14: 637 646.
Wu C.I. and Xu Y., 2003. Sexual antagonism and X inactivation — The SAXI hypothesis. Trends Genet., 19: 243-247.
Xu L., Fong Y., and Strome S., 2001. The Caenorhabditis elegans matemal-effect sterile proteins, MES-2, MES- 3, and MES-6, are associated in a complex in embryos. Proc. Natl. Acad. Sci. 98: 5061-5066.
Yonker S.A., and Meyer B.J., 2003. Recruitment of C. elegans dosage compensation proteins for gene-specific versus chromosome-wide repression. Development 130: 6519-6532.