Общее резюме
Грибы дают нам превосходные модели для понимания структуры и функции хроматина как в активно транскрибируемых районах (эухроматин), так и в транскрипционно «молчащих» районах (гетерохроматин). Почкующиеся дрожжи, Saccharomyces cerevisiae, явились бесценной эукариотической моделью для изучения структуры хроматина, связанной с транскрипцией в эухроматиновых районах, и для создания парадигмы для «молчащего» хроматина. С другой стороны, дробянковые дрожжи Schizosaccharomyces pombe и нитчатый гриб Neurospora crassa явились эффективным средством для исследования форм сайленсинга, более тесно связанных с таковыми у высших эукариот. У этих грибов гетерохроматиновые районы сравнительно малы и несущественны для жизнеспособности, что делает их более легкими для расчленения [to dissect] и манипулирования. Наше понимание гетерохроматина вокруг центромерных и теломерных районов достигло наибольших успехов в работе с дрожжами S. cerevisiae и S. pombe; однако механизм сайленсинга хроматина, используемый S. pombe, демонстрирует особенности, консервативные и у этих дрожжей, и у гетерохроматиновых районов высших эукариот. Действительно, оба гриба, обсуждаемые в этой главе, — N. crassa и S. pombe — контрастируют с S. cerevisiae в том отношении, что они используют РНК-интерференцию (RNAi), метилирование гистона H3 по лизину 9 и белки типа белка I гетерохроматина (НР1) для формирования «молчащего» гетерохроматина способом, который консервативен или сходен с таковым у растений и многоклеточных животных. Кроме того, N. crassa широко использует метилирование ДНК, являющееся характерной чертой гетерохроматина у многих высших эукариот и классическим эпигенетическим феноменом. Сначала обсуждаются природа и функции гетерохроматина у S. pombe после краткого знакомства с этим организмом. Затем мы обратимся к N. crassa, чтобы продемонстрировать вклад этого нитчатого гриба в эпигенетические исследования.