Литература
Aasland R. and Stewart A.F., 1995. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res. 23: 3168–3173.
Akhtar A. and Becker P.B., 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5: 367–375.
Alekseyenko A.A., Larschan E., Lai W.R., Park P.J., and Kuroda M.I., 2006. High-resolution ChlP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev., 20: 848–857.
Amrein H. and Axel R., 1997. Genes expressed in neurons of adult male Drosophila. Cell 88: 459–469.
Badenhorst P., Voas M.. Rebay I., and Wu C., 2002. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16: 3186–3198.
Bashaw G.J. and Baker B.S., 1997. The regulation of the Drosophila msl-2 gene reveals a function for sex-lethal in translational control. Cell 89: 789–798.
Birchler J.A., Pal-Bhadra M., and Bhadra U., 2003. Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117: 179–190.
Bone J.R., Lavender J.. Richman R.. Palmer M.J.. Turner B.M., and Kuroda M.I., 1994. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 8: 96-104.
Cline T.W. and Meyer B.J., 1996. Vive la difference: Males vs females in flies vs worms. Annu. Rev. Genet. 30: 637–702.
Copps K., Richman R., Lyman L.M., Chang K.A., Rampersad-Ammons J., and Kuroda M.I., 1998. Complex formation by the Drosophila MSL proteins: Role of the MSL2 RING finger in protein complex assembly. EMBO J. 17: 5409–5417.
Corona D.F., Clapier C.R., Becker P.B., and Tamkun J.W., 2002. Modulation of ISWI function by site-specific histone acetylation. EMBORep. 3: 242–247.
Delattre M., Spierer A., Jaquet Y., and Spierer P., 2004. Increased expression of Drosophila Su(var)3-7 triggers Su(var) 3-9-dependent hete-rochromatin formation. J. Cell Sci. 117: 6239–6247.
Demakova O.V., Kotlikova I.V., Gordadze PR., Alekseyenko A.A., Kuroda M.I., and Zhimulev I.F., 2003. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112: 103–115.
Deuring R., Fanti L., Armstrong J.A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S.L., Berloco M., et al., 2000. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5: 355–365.
Eisen A., Utley R.T., Nourani A., Allard S., Schmidt P., Lane W.S., Lucchesi J.C., and Cote J., 2001. The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation. J. Biol. Chem. 276: 3484–3491.
Fagegaltier D. and Baker B.S., 2004. X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol. 2: e341.
Gilfillan G.D., Dahlsveen I.K., and Becker P.B., 2004. Lifting a chromosome: Dosage compensation in Drosophila melanogaster. FEBS Lett. 567: 8-14.
Gilfillan G.D., StraubT., de Wit E., Greil E., Lamm R., van Steensel B., and Becker P.B., 2006. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev., 20: 858–870.
Gorman M., Franke A., and Baker B.S., 1995. Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila Development 121: 463–475.
Gu W., Szauter P., and Lucchesi J.C., 1998. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22: 56–64.
Hamada F.N., Park P.J., Gordadze P.R., and Kuroda M.I., 2005. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev., 19: 2289–2294.
HilfikerA., Hilfiker-Kleiner D., PannutiA., and Lucchesi J.C., 1997. mof, a putative acetyl transferase gene related to the Tlp60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16: 2054–2060.
Jin Y., Wang Y, Walker D.L., Dong H., Conley C, Johansen J, and Johansen K.M., 1999. JIL-1: A novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4: 129–135.
Kageyama Y., Mengus G., Gilfillan G., Kennedy H.G., Stucken-holz C., Kelley R.L., and Kuroda M.I., 2001. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J., 20: 2236–2245.
Kelley R.L., 2004. Path to equality strewn with roX. Dev. Biol. 269: 18–25.
Kelley R.L., Wang J., Bell L., and Kuroda M.I., 1997. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387: 195–199.
Kelley R.L., Meller V.H., Gordadze P.R., Roman G., Davis R.L., and Kuroda M.I., 1999. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98: 513–522.
Kelley R.L., Solovyeva I., Lyman L.M., Richman R., Solovyev V., and Kuroda M.I., 1995. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867–877.
Koonin E.V., Zhou S., and Lucchesi J.C., 1995. The chromo superfamily: New members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res. 23: 4229–4233.
Kuroda M.I., Keman M.J., KreberR., Ganetzky B., and Baker B.S., 1991. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66: 935–947.
KuschT., Florens L., Macdonald W.H., Swanson S.K., Glaser R.L., Yates J.R., III, Abmayr S.M., Washburn M.R, and Workman J.L., 2004. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306: 2084–2087.
Lee C.C., Chang K.A., Kurtoda M.I., and Hurwitz J., 1997. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16: 2671–2681.
Legube G., McWeeney S.K., Lercher M.J., and Akhtar A., 2006. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev., 20: 871–883.
Lucchesi J.C. and Manning J.E., 1987. Gene dosage compensation in Drosophila melanogaster. Adv. Genet. 24: 371–429.
Lucchesi J.C., Kelly W.G., and Panning B., 2005. Chromatin remodeling in dosage compensation. Annu. Rev. Genet. 39: 615–651.
Marin I., 2003. Evolution of chromatin-remodeling complexes: Comparative genomics reveals the ancient origin of “novel” compensasome genes. J. Mol. Evol. 56: 527–539.
Meller V.H. and Rattner B.P., 2002. The roXgenes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21: 1084–1091.
Meller V.H., Wu K.H., Roman G., Kuroda M.L., and Davis R.L., 1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88: 445–457.
Meller V.H., Gordadze PR., Park Y., ChuX., Stuckenholz C., Kelley R.L., and Kuroda M.L., 2000. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol. 10: 136–143.
Mendjan S., Taipale M., Kind J., Holz H., Gebhardt P., Schelder M., Verfneulen M., Buscaino A., Duncan K., Mueller J., et al., 20(56. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21: 811–823.
Mlito Y., Henikoff J.G., and Henikoff S., 2005. Genome-scale profiling of histone H3 3 replacement patterns. Nat. Genet. 37: 1090–1097.
Morales V., Straub X, Neumann M.F., Mengus G., Akhtar A., and Becker P.B., 2004. Functional integration of the histone acetyl-transferase MOF into the dosage compensation complex. EMBO J. 23: 2258–2268.
Morgan T.H., 1932. The scientific basis of evolution. Norton, New York, p. 80.
Oh H., Bone J.R., and Kuroda M.I., 2004. Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr. Biol. 14: 481–487.
Oh H., Park Y., and Kuroda M.L, 2003. Local spreading of MSL complexes from roX genes on the Drosophda X chromosome. Genes Dev. 17: 1334–1339.
Palmer M.J., MergnerVA., Richman R., Manning J.E., Kuroda M.L, and Lucchesi J. C., 1993. The male-specific lethal-one (msi-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics 134: 545–557.
Pannuti A and Lucchesi J.C., 2000. Recycling to remodel: Evolution ofdos-age-compensation complexes. Curr. Opm. Genet. Dev. 10: 644–650.
Pardo P.S., Leung J.K., Lucchesi J.C., and Pereira-Smith O.M., 2002. MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation. J. Biol. Chem. 277: 50860-50866.
Park Y., Kelley R.L., Oh H., Kuroda M.L., and Meller V.H., 2002. Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298: 1620-1623
Sass G.L., Pannuti A., and Lucchesi J.C.. 2003. Male-specific lethal complex of Drosophila targets activated regions ofthe X chromosome for chromatin remodeling. Proc. Natl. Acad. Sci. 100: 8287–8291.
Schalch T., Duda S., Sargent D.F., and Richmond T.J., 2005. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436: 138–141.
Scott M.J., Pan L.L., Cleland S.B., Knox A.L., and Heinrich J., 2000. MS LI plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J.. 19: 144–155.
Sif S., 2004. ATP-dependent nucleosome remodeling complexes: Enzymes tailored to deal with chromatin. J. Cell Biochem. 91: 1087–1098.
Smith C.L. and Peterson C.L., 2005. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65: 115–148.
Smith E.R., Allis C.D., and Lucchesi J.C., 2001. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol.Chem. 276: 31483-31486.
Smith E.R., Cayrou G., Huang R., Lane W.S., Cote J., and Lucchesi J.C., 2005. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acety-lation at lysine 16. Mol. Cell. Biol. 25: 9175–9188.
Smith E.R., Pannuti A., GuW., SteumagelA., Cook R.G., Allis C.D., and Lucchesi J.C., 2000. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol., 20: 312-318
Smith E.R., Eisen A., GuW., Sattah M., Pannuti A., Zhou J., Cook R.G., Lucchesi J.C., and Allis C.D., 1998. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Scl 95: 3561–3565.
Straub T., Dahlsveen I.K., and Becker P.B., 2005a. Dosage compensation in flies: Mechanism, models, mystery. FEBS Lett. 579: 3258–3263.
Straub T., Gilfillan C.D., Maier V.K., and Becker P.B., 2005b. The Drosophila MSL complex activates the transcription of target genes. Genes Dev., 19: 2284–2288.
Straub T., Neumann M.F., Prestel M., Kremmer E., Kaether C, Haass C, and Becker P.B., 2005c. Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma 114: 352–364.
Stuckenholz C, Meller V.H., and Kuroda M.L, 2003. Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics 164: 1003–1014.
Suka N., Luo K., and Grunstein M., 2002. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysinel6 and spreading of heterochromatin. Nat. Genet. 32: 378–383.
Turner B.M., Birley A.J., and Lavender J., 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.
Wang Y., Zhang W., Jin Y., Johansen J., and Johansen K.M., 2001. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443.