Литература
Alarcon J.M., Malleret G., Touzani K., Vronskaya S., Ishii S., Kan-del E.R., and Barco A., 2004. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42: 947-959.
Amir R.E., Van den Veyver L.B., Wan M., Tran C.Q., Francke U., and Zoghbi H.Y., 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23: 185-188.
Anway M.D., Cupp A.S., Uzumcu M., and Skinner M.K., 2005. Epigenetic transgenerational actions of endocrine disrupters and male fertility. Science 308: 1466-1469.
Anas J., Alberts A.S.. Brindle P., Claret EX.. Smeal T., Karin M.. Feramisco J., and Montminy M., 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor Nature 370: 226-229.
Am P.H., Williams C.A., Zori R.T., Driscoll D.J., and Rosenblatt D.S., 1998. Methylenetetrahydrofolate reductase deficiency in a patient with phenotypic findings of Angelman syndrome. Am. J. Med. Genet. 77: 198-200.
Bachman K.E., Rountree M.R., and Baylin S.B., 2001 Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276: 32282-32287.
Bastepe M., Frohlich L.E, Hendy G.N., Indridason O.S., Josse R.G., Koshiyama H., Korkko J., Nakamoto J.M., Rosenbloom A.L., Slyper A.H., et al., 2003. Autosomal dominant pseudohypoparathyroidism type lb is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J. Clin. Invest. 112: 1255-1263.
Bembe N.G., Mangelsdorf M., Jagla M., Vanderluit J., Garrick D., Gibbons R.J., Higgs D.R., Slack R.S., and Picketts D.J., 2005. The chro-matin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J.Clin. Invest. 115: 258-267.
Bickmore W.A. and van der Maarel S.M., 2003. Perturbations of chromatin structure in human genetic disease: Recent advances. Hum. Mol. Genet. 12: R207-R213.
Boerkoel C.E, Takashima H., John J., Yan J., Stankiewicz P., Rosen-barker L., Andre J.L., Bogdanovic R., Burguet A., Cockfield S., et al., 2002. Mutant chromatin remodeling protein SMAR-CAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30: 215-220.
Bottiglieri T., Hyland K., and Reynolds E.H., 1994. The clinical potential of ademethionine (S-adenosylmethionine) in neurological disorders. Drugs 48: 137-152.
Botto L.D. and Yang Q., 2000. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am. J. Epidemiol. 151: 862-877.
Brattstrom L., Wilcken D.E., Ohrvik J., and Brudin L., 1998. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: The result of a meta-analysis. Circulation 98: 2520-2526.
Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenen-baum S.A., Jin X., Feng Y., Wilkinson K.D., Keene J.D., et al., 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107: 477-487.
Carney R.M., Wolpert CM., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., Vance J.M., and Pericak-Vance M.A., 2003. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28: 205-211.
Caspary T., Cleary M.A., Perlman E.J., Zhang P., Elledge S.J., and Tilgh-man S.M., 1999. Oppositely imprinted genes p57Kip2 and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 13: 3115-3124.
Caudy A.A., Myers M., Hannon G.J., and Hammond S.M., 2002. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16: 2491-2496.
Chen J., Giovannucci E.L., and Hunter D.J., 1999. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: An example of gene-environment interactions in colorectal tumorigenesis. J.Nutr. 129: S560-S564.
Chen W.G., Chang Q., Lin Y., MeissnerA., West A. E., Griffith E.C., Jaenisch R., and Greenberg M.E., 2003. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885-889.
Chen Z., Karaplis A.C., Ackerman S.L., Pogribny LP, Melnyk S., Lussier-Cacan S., Chen M.F., Pai A., John S.W., Smith R.S., et al., 2001. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10: 433-443.
Chrivia J.C., Kwok R.P., Lamb N., Hagiwara M., Montminy M.R., and Goodman R.H., 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855-859.
Coffee B., Zhang E, Warren S.T., and Reines D., 1999. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells (erratum Nat. Genet. 22: 209 [1999]). Nat. Genet. 22: 98-101
Collins A.L., Levenson J.M., Vilaythong A.P., Richman R.D., Armstrong L., Noebels J.L., Sweatt J.D.. andZoghbi H.Y., 2004. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13: 2679-2689.
Cooney C.A., 1993. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev. Aging 57: 261-273.
CooperW.N., LuhanaA., EvansG.A., RazaH., Haire A.C., Gmndy R., Bowdin S.C., Riccio A., Sebastio G., Bliek J., et al., 2005. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 13: 1025-1032.
Couvert P., Bienvenu T., AquavivaC., Poirier K., Moraine C., Gen-drot C., Verloes A., Andres C., Le Fevre A.C., Souville I., et al.. 2001. MECP2 is highly mutated in X-linked mental retardation. Hum. Mol. Genet. 10: 941-946.
Cox G.F., Burger J., Lip V., Mau U.A., Sperling K., Wu B.L., and Horsthemke B., 2002. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet. 71: 162-164
Curtin P., Pirastu M., Kan Y.W., Gobert-Jones J.A., Stephens A.D., and Lehmann H., 1985. A distant gene deletion affects p-globin gene function in an atypical y (^-thalassemia. J.Clin. Invest. 76: 1554-1558.
Darnell J.C., Jensen K.B., Jin P., Brown V., Warren S.T., and Darnell R.B., 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107: 489-499.
Darnell J.C., Fraser C.E., Mostovetsky O., Stefani G., Jones T.A., Eddy S.R., and Darnell R.B., 2005. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev., 19: 903-918.
DeBaun M.R., Niemitz E.L., and Feinberg A.P., 2003. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and HI9. Am. J. Hum. Genet. 72: 156-160.
Dennis C., 2003. Epigenetics and disease: Altered states. Nature 421: 686-688.
Ding E, Prints Y., Dhar M.S., Johnson D.K., Gamacho-Montero C., Nicholls R.D., and Francke U., 2005. Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Wlli syndrome mouse models. Mamm. Genome 16: 424-431.
Driscoll M.C., Dobkin C.S., and Alter B.P., 1989. ???-thalassemia due to a de novo mutation deleting the 5’ p-globin gene activation-region hypersensitive sites. Proc. Natl. Acad. Sci. 86: 7470-7474.
Eggermann T, Wollmann H.A., Kuner R., Eggermann K., Enders H., Kaiser P., and Ranke M.B., 1997. Molecular studies in 37 Silver-Russell syndrome patients: Frequency and etiology of uniparental disomy. Hum. Genet. 100: 415-419.
Ehrlich M., 2003. The ICF syndrome, a DNAmethyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol 109: 17-28.
Ehrlich M., Buchanan K.L., Tsien F., Jiang G., Sun B., Uicker W., Weemaes C.M., Smeets D., Sperling K., Belohradsky B.H., et al., 2001. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum. Mol. Genet. 10: 2917-2931.
Engel E., 1980. A new genetic concept: Uniparental disomy and its potential effect, isodisomy. Am. J. Med. Genet. 6: 137-143.
Fattal-Valevski A., Bassan H., Korman S.H., Lerman-Sagie T., Gutman A., and Harel S., 2000. Methylenetetrahydrofolate reductase deficiency: Importance of early diagnosis./. Child Neurol. 15: 539-543.
Feng Y., Absher D., Eberhart D.E., Brown V., Maker H.E., and Warren S.T., 1997. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell 1: 109-118.
Flint J., Thomas K., Micklem G., Raynham H., Clark K., Doggett N.A., King A., and Higgs D.R., 1997. The relationship between chromosome structure and function at a human telomeric region. Nat. Genet. 15: 252-257.
Forrester W.C., Epner E., Driscoll M.C., Enver T., Brice M., Papa-yannopoulouT., andGroudine M., 1990. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev. 4: 1637-1649.
Fraga M.E., Ballestar E., Paz M.E., Ropero S., Setien E., Ball-estar M.L., Heine-Suner D., Cigudosa J.C., Urioste M., Benitez J., et al., 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. 102: 10604-10609.
Gabellini D., Green M.R., and Tupler R., 2002. Inappropriate gene activation in FSHD: A repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110: 339-348.
Gibbons R.J., Picketts D.J., Villard L., and Higgs D.R., 1995. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80: 837-845.
Gibbons R.J., Pellagatti A., Garrick D., Wood W.G., Malik N., Ayyub H., Langford C., Boultwood J.. Wainscoat J.S., and Higgs D.R., 2003. Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the a-thalassemia myelodysplasia syndrome (ATMDS). Nat. Genet. 34: 446-449.
Gicquel C., Rossignol S., Cabrol S., Houang M., Steunou V., Barbu V., Danton R., Thibaud N., Le Merrer M., Burglen L., et al., 2005. Epimutation of the telomeric imprinting center region on chromosome llpl5 in Silver-Russell syndrome. Nat. Genet. 37: 1003-1007.
Gowher H. and Jeltsch A., 2002. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyl-transferases. J. Biol. Chem. 277: 20409-20414.
Goyette P., Sumner J.S., Milos R., Duncan A.M., Rosenblatt D.S., Matthews R.G., and Rozen R., 1994. Human methylenetetrahydrofolate reductase: Isolation of cDNA, mapping and mutation identification. Nat. Genet. 7: 195-200.
Grosveld E., 1999. Activation by locus control regions? Curr. Opin. Genet. Dev. 9: 152-157.
Hagberg B.. Aicardi J., Dias K., and Ramos O., 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Ann. Neurol. 14: 471-479.
Hagerman P.J. and Hagerman R.J., 2004. The fragile-X premutation: A maturing perspective. Am. J. Hum. Genet. 74: 805-816.
Hagerman R.J., Van Housen K., Smith A.C., and McGavran L., 1984. Consideration of connective tissue dysfunction in the fragile X syndrome. Am. J. Med. Genet. 17: 111-121.
Handa V., Saha T., and Usdin K., 2003. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res. 31: 6243-6248.
Hansen R.S., Wijmenga C., Luo P., Stanek A.M., Canfield T.K., Weemaes CM., and Gartler S.M., 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. 96: 14412-14417.
Harikrishnan K.N., Chow M.Z., Baker E.K., Pal S., Bassal S., Bra-sacchio D., Wang L.. Craig J.M., Jones PL., Sif S., and El-Osta A., 2005. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37: 254-264.
Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., andTilghman S.M., 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486-489.
Harrison C.J., Jack E.M., Allen T.D., and Harris R., 1983. The fragile X: A scanning electron microscope study. /. Med. Genet., 20: 280-285.
Hasegawa T., Hara M., Ando M., Osawa M., Fukuyama Y., Taka-hashi M., and Yamada K., 1984. Cytogenetic studies of familial Prader-Willi syndrome. Hum. Genet. 65: 325-330.
Hayward B.E., Kamiya M., Strain L., Moran V., Campbell R., Hayashizaki Y, and Bonthron D.T., 1998. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl. Acad. Sci. 95: 10038-10043.
Henry I., Bonaiti-Pellie C., Chehensse V., Beldjord C, Schwartz C, Utermann G., and Junien C., 1991. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351: 665-667.
Hoal-van Helden E.G. and van Helden P.D., 1989. Age-related methylation changes in DNA may reflect the proliferative pc -tential of organs. Mutat. Res. 219: 263-266.
Horike S., Cai S., Miyano M., Cheng J.F., and Kohwi-ShigematsuT., 2005. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37: 31-40.
Hubbard VS., Davis P.B., di Sant’Agnese PA., Gorden P., and Schwartz R.H., 1980. Isolated growth hormone deficiency and cystic fibrosis: A report of two cases. Am. J. Dis. Chdd 134: 317-319.
Ingrosso D., Cimmino A., Pema A.F., Masella L., De Santo N.G., De Bonis M.L., Vacca M., D’Esposito M., D’Urso M., Galletti P., and Zappia V., 2003. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomo-cysteinaemia in patients with uraemia. Lancet 361: 1693-1699.
Ishizuka A., Siomi M.C., and Siomi H., 2002. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16: 2497-2508.
Issa J.P., Ottaviano Y.L., Celano P., Hamilton S.R., Davidson N.E., and Baylin S.B., 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet. 7: 536-540.
Jeanpierre M., Turleau C., Aurias A., Prieur M., Ledeist E., Fischer A., and Viegas-Pequignot E., 1993. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2: 731-735.
Jiang Y.H., Armstrong D., Albrecht U., Atkins C.M., Noebels J.L., Eichele C., Sweatt J. D., and Beaudet A. L., 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation (see comments). Neuron 21: 799-811.
Jin P., Alisch R.S., and Warren S.T., 2004a. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6: 1048-1053.
Jin P., Zamescu D.C., Zhang E., Pearson C.E., Lucchesi J.C., Moses K., and Warren S.T., 2003. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39: 739-747.
Jin P., Zamescu D.C, Ceman S., Nakamoto M., Mowrey J., Jongens T.A., Nelson D.L., Moses K., and Warren S.T., 2004b. Biochemical and genetic interaction between the fragile X mental retardation protein and the micro RNA pathway. Nat. Neurosci. 7: 113-117.
Joyce J.A., Lam W.K., Catchpoole D.J., Jenks P., Reik W, Maher E.R., and Schofield P.N., 1997. Imprinting of IGF2 and H19: Lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 6: 1543-1548.
Kaufmann W.E., Jarrar M.H., Wang J.S., Lee Y.J., Reddy S., Bibat G., and Naidu S., 2005. Histone modifications in Rett syndrome lymphocytes: A preliminary evaluation. Brain Dev. 27: 331-339.
Kioussis D., Vanin E., deLange T., Flavell R.A., and Grosveld E.G., 1983. Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306: 662-666.
Kishi N. and Macklis J.D., 2004. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol. Cell. Neurosci. 27: 306-321.
KishinoT., Lalande M., andWagstaffJ., 1997. UBE3A/E6-APmutations cause Angelman syndrome. Nat. Genet. 15: 70-73.
Kondo T., Bobek M.P., Kuick R., Lamb B., Zhu X., Narayan A., Bourc’his D., Viegas-Pequignot E., Ehrlich M., and Hanash S.M., 2000. Whole-genome methylation scan in ICF syndrome: Hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet. 9: 597-604.
Korenke G.C., Fuchs S., Krasemann E., Doerr H.G., Wilichowski E., Hunneman D.H., and Hanefeld F., 1996. Cerebral adreno-leukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann. Neurol. 40: 254-257.
Kwok R.P., Lundblad J.R., Chrivia J.C., Richards J.P., Bachinger H.P., Brennan R.G., Roberts S.G., Green M.R., and Goodman R.H., 1994. Nuclear protein GBP is a coactivator for the transcription factor CREB. Nature 370: 223-226.
Laggerbauer B.. Ostareck D., Keidel E.M.. Ostareck-Lederer A., and Fischer U., 2001. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10: 329-338.
Ledbetter D.H., Riccardi V.M., Airhart S.D., Strobel R.J., Keenan B.S., and Crawford J. D., 1981. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N. Engl. J. Med. 304: 325-329.
Lee M.P., DeBaun M.R., Mitsuya K., Galonek H.L., Brandenburg S., Oshimura M., and Feinberg A.P., 1999. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. 96: 5203-5208.
Lemmers R.J., de Kievit P, Sandkuijl L., Padberg G.W., van Ommen G.J., Frants R.R., and van der Maarel S.M., 2002. Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat. Genet. 32: 235-236.
Lewis J.D., Meehan R.R., Henzel W.J., Maurer-Fogy I., Jeppesen P., Klein F., and Bird A., 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905-914.
Li Z., Zhang Y., Ku L., Wilkinson K.D., Warren S.T., and Feng Y., 2001. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29: 2276-2283.
Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., Sharma S., Pearson D., Plotsky P.M., and Meaney M.J., 1997. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress Science 277: 1659-1662.
Lubs H.A., 1969. A marker X chromosome. Am. J. Hum. Genet. 21: 231-244.
Ludwig M., Katalinic A., Gross S., Sutcliffe A., Varon R., and Horst-hemke B., 2005. Increased prevalence of imprinting defects in patients with Angelman syndrome bom to subfertile couples. J. Med. Genet. 42: 289-291.
Ma J., Stampfer M.J., Giovannucci E., Artigas C, Hunter D.J., Fuchs C, Willett W.C., Selhub J., Hennekens C.H., and Rozen R.. 1997. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57: 1098-1102.
Magenis R.E., Brown M.G., Lacy D.A., Budden S., and LaFranchi S., 1987. Is Angelman syndrome an alternate result of del( 15) (qllql3)?Am/. Med. Genet. 28: 829-838.
Martin J. and Bell J., 1943. A pedigree of mental defect showing sex-linkage. Arch. Neurol. Psychiat. 6: 154-157.
Martinowich K., Hattori D., Wu F.L., Fouse S., He E., Hu Y., Fan G., and Sun Y.E., 2003. DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302: 890-893.
Mathews K.D., 2003. Muscular dystrophy overview. Genetics and diagnosis. Neurol Clin. 21: 795-816
Matsuura T., Sutcliffe J.S., Fang P., Galjaard R.J., Jiang Y.H., Benton C.S., Rommens J.M., and Beaudet A.L., 1997. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 15: 74-77.
Mayr B. and Montminy M., 2001. Transcriptional regulation by the phosphoiylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2: 599-609.
Mays- Hoopes L.L., 1989. Age-related changes in DNA methylation: Do they represent continued developmental changes? Int. Rev. Cytol. 114: 181-220.
McDowell T.L., Gibbons R.J., Sutherland F.L, O’Rourke D.M., Bickmore W.A., Pombo A., Turley H., Gatter K., Picketts D.J., Buckle V.J., et al., 1999. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. 96: 13983-13988.
Meguro M., Mitsuya K., Nomura N., Kohda M., KashiwagiA., Nishigaki R., Yoshioka H., Nakao M., Oishi M., and Oshimura M., 2001. Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: An imprinted direct repeat cluster resembling small nucleolar RNA genes. Hum. Mol. Genet. 10: 383-394.
Meins M., Lehmann J., Gerresheim F., Herchenbach J., Hagedom M., Hameister K., and Epplen J.T., 2005. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42: e12.
Meloni I., Bruttini M., Longo I., Mari E., Rizzolio F. D’Adamo P.. Den-vriendt K., Fryns J.P., Toniolo D., and Renieri A., 2000. A mutation in the Rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am. J. Hum. Genet. 67: 982-985.
Mullaney B.C., Johnston M.V., and Blue M.E., 2004. Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123: 939-949.
Murata T., Kurokawa R., Krones A., Tatsumi K., Ishii M., Taki T., Masuno M., Ohashi H, Yanagisawa M., Rosenfeld M.G.. et al., 2001. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome Hum. Mol. Genet. 10: 1071-1076.
Nan X., Campoy F.J., and Bird A., 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471-481.
Neul J.L. and Zoghbi H.Y., 2004. Rett syndrome: A prototypical neurodevelopmental disorder. Neuroscientist 10: 118-128.
Nicholls R.D., Knoll J.H.M., Butler M.G., Karam S., and Lalande M., 1989. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342: 281-285.
Nuber U.A., Kriaucionis S., RoloffT.C., Guy J., Selfridge J., Stein-hoff G, Schulz R., Lipkowitz B., Ropers H.H., Holmes M.C., and Bird A., 2005. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum. Mol. Genet. 14: 2247-2256.
Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., and Naka-tani Y., 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953-959.
Ohta T., Gray T.A., Rogan P.K., Buiting I.C., Gabriel J.M., Saitoh S., Muralidhar B., Bilienska B., Krajewska-Walasek M., Driscoll D.J., et al., 1999. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am. J. Hum. Genet. 64: 397-413.
Okano M., Bell D.W., Haber D.A., and Li E., 1999. DNA meth-yltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257.
Orstavik K.H., Eiklid K., van der Hagen C.B., Spetalen S., Kierulf K., Skjeldal O., and Buiting K., 2003. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am. J. Hum. Genet. 72: 218-219.
Petrij E., Giles R.H., Dauwerse H.G., Sans J.J., Hennekam R.C., Masuno M., Tommerup N., van Ommen G J., Goodman R.H., Peters D.J., et al., 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348-351.
Petroms A., 2004. The origin of schizophrenia: Genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatry 55: 965-970.
Picketts D.J., Higgs D.R., Bachoo S., Blake D.J., Quarrell O.W., and Gibbons R.J., 1996. ATRX encodes a novel member of the SNF2 family of proteins: Mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5: 1899-1907.
Pieretti M., Zhang E., Fu Y.-H., Warren S.T., Oostra B.A., Caskey C.T., and Nelson D. L., 1991. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66: 817-822.
Ping A.J., Reeve A.E., Law D.J., Young M.R., Boehnke M., and Feinberg A.P., 1989. Genetic linkage of Beckwith-Wiedemann syndrome to 1 lpl5. Am. J. Hum. Genet. 44: 720-773.
Prawitt D., Enklaar T., Gartner-Rupprecht B., Spangenberg C., Oswald M., Lausch E., Schmidfke P., Reutzel D., Fees S., Lucito R., et al., 2005. Microdeletion of target sites for insulator protein CTCF in a chromosome 1 lpl5 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc. Natl. Acad. Sci. 102: 4085-4090.
Rampersaud G.C., Kauwell G.P., Hutson A.D.. Cerda J.J., and Bailey L.B., 2000. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am. J. Clin.Nutr. 72: 998-1003.
Reik W., 1989. Genomic imprinting and genetic disorders in man. Trends Genet. 5: 331-336.
Reynolds E.H., Carney M.W., and Toone B.K., 1984. Methylation and mood. Lancet 2: 196-198.
Richards B.W., Sylvester P.E., and BrookerC., 1981. Fragile X-linked mental retardation: The Martin-Bell syndrome. J. Merit. Defic. Res. 25: 253-256.
Roelfsema J.H., White S.J., Ariyurek Y., Bartholdi D., Niedrist D., Papadia E., Bacino C.A., den Dunnen J.T., van Ommen G.J., Breuning M.H., et al., 2005. Genetic heterogeneity in Rubinstein-Taybi syndrome: Mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76: 572-580.
Rougeulle C., Cardoso C., Fontes M., Colleaux L., and Lalande M., 1998. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Mat Genet., 19: 15-16.
Rozen R., 1996. Molecular genetics of methylenetetrahydrofolate reductase deficiency. /. Inherit. Metab. Dis., 19: 589-594.
Runte M., Varon R., Horn D., Horsthemke B., and Buiting K., 2005. Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum. Genet. 116: 228-230.
Schimke R.N., Horton W.A., and King C.R., 1971. Chondroitin-6-sulphaturia, defective cellular immunity, and nephrotic syndrome. Lancet 1: 1088-1089.
Schule B., Albalwi M., Northrop E., Francis D.L., Rowell M., Slater H.R., Gardner R.J., and Francke U., 2005. Molecular breakpoint cloning and gene expression studies of a novel translocation t(4; 15)(q27 ;ql 1.2) associated with Prader-Willi syndrome. BMC Med. Genet. 6: 18.
Schwahn B. and Rozen R., 2001. Polymorphisms in the methylenetetrahydrofolate reductase gene: Clinical consequences. Am. J. Pharmacogenomics 1. 189-201.
Shahbazian M.D., Antalffy B., Armstrong D.L., and Zoghbi H.Y., 2002a. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 11: 115-124.
Shahbazian M., Young J., Yuva-Paylor L., Spencer C., Antalffy B., Noebels J., Armstrong D., Paylor R., and Zoghbi H., 2002b. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35: 243-254.
Smeets D.F., Moog U., Weemaes C.M.. Vaes-Peeters G., Merkx G.F., Niehof J.P., and Hamers G., 1994. ICF syndrome: A new case and review of the literature. Hum. Genet. 94: 240-246.
Smeets D.F., Hamel B.C., Nelen M.R., Smeets H.J., Bollen J.H., Smits A.P., Ropers H.H., and van Oost B.A., 1992. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. A. Engl. J. Med. 326: 807-811.
Smilinich N.J., Day CD., Fitzpatrick G.V., Caldwell G.M., Lossie A.C., Cooper P.R., Smallwood A.C., Joyce J.A., Schofield P.N., Reik W., et al., 1999. A maternally methylated CpG island in KvLQTl is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wedemann syndrome. Proc. Natl. Acad. Sci. 96: 8064-8069.
Spence J.E., Perciaccante R.G., Greig G.M., Willard H.F., Ledbetter D.H., Hejtmancik J.F., Pollack M.S., O’Brien W.E., and Beaudet A.L., 1988. Uniparental disomy as a mechanism for human genetic disease. Am. J. Hum. Genet. 42: 217-226.
Spranger J., Hinkel G.K., Stoss H.. Thoenes W., Wargowski D., and Zepp E., 1991. Schimke immuno-osseous dysplasia: A newly recognized multisystem disease./. Pediatr. 119: 64-72.
Sun F.L., Dean W.L., Kelsey G., Allen N.D., and Reik W., 1997. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 389: 809-815.
Suter C.M., Martin D.L., and Ward R.L., 2004. Germline epimuta-tion of MLH1 in individuals with multiple cancers. Nat. Genet. 36: 497-501.
Sutherland G.R., 1977. Fragile sites on human chromosomes: Demonstration of their dependence on the type of tissue culture medium. Science, 197: 265-266.
Taha D., Boerkoel C.F., Balfe J.W., Khalifah M., Sloan E.A., Barbar M., Haider A., and Kanaan H., 2004. Fatal lymphoproliferative disorder in a child with Schimke immuno-osseous dysplasia. Am. J. Med. Genet. A 131: 194-199.
Tommerup N., van der Hagen C.B., and Heiberg A., 1992. Tentative assignment of a locus for Rubinstein-Taybi syndrome to 16pl 3.3 by a de novo reciprocal translocation, t(7; 16)(q34;pl3.3). Am. J. Med. Genet. 44: 237-241
Tsai T.E., Jiang Y.H.. Bressler J., Armstrong D.. and Beaudet A.L., 1999. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 8: 1357-1364.
Tuck-Muller C.M., Narayan A., Tsien E., Smeets D.F., Sawyer J., Fiala E.S., Sohn O.S., and Ehrlich M., 2000. DNAhypomethyla-tion and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet. Cell Genet. 89: 121-128.
Tupler R. and Gabellini D.. 2004. Molecular basis of facioscapulohumeral muscular dystrophy. Cell. Mol. Life Sci. 61: 557-566.
van Deutekom J.C, Wijmenga C., van Tienhoven E.A., Gruter A.M., Hewitt J.E., Padberg G.W., van Ommen G.J., Hofker M.H., and Frants R.R., 1993. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2: 2037-2042.
Van Esch H., Bauters M., Ignatius J., Jansen M., Raynaud M., Hollanders K., Lugtenberg D., Bienvenu T., Jensen L.R., Gecz J., et al., 2005. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77: 442-453.
VerkerkA. J.M.H., PierettiM., Sutcliffe J. S., FuY-H., KuhlD.RA., Pizutti A., Reiner O., Richards S., Victoria M.E, Zhang R., et al., 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905-914.
Villard L., Gecz J., Mattel J.F., Fontes M., Saugier-Veber P., Mun-nich A., and Lyonnet S., 1996. XNP mutation in a large family with Juberg-Marsidi syndrome. Nat. Genet. 12: 359-360.
Wan M., Zhao K., Lee S.S., and Francke U., 2001. A/FCP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome. Hum. Mol. Genet 10: 1085-1092.
Wan M., Lee S.S., Zhang X., Houwink-Manville I., Song H.R., Amir R.E., Budden S., Naidu S., Pereira J.L., Lo I.F., et al., 1999. Rett syndrome and beyond: Recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529.
Warren S.T. and Sherman S.L., 2001. The fragile X syndrome. In The metabolic and molecular bases of inherited disease, 8th edition (ed. C.R. Scriver et al.), vol. 1, pp. 1257-1289. McGraw-Hill, New York.
Waterland R.A. and Jirtle R.L., 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23: 5293-5300.
Weatherall D.J., Clegg M.B., Higgs D.R., and Wood W.G., 2001. The hemoglobinopathies. In The metabolic & molecular bases of inherited disease, 8th edition (ed. C.R. Scriver et al.), pp. 4571-4636. McGraw-Hill, New York.
Weaver I.C., CervoniN., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., and Meaney M.J., 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847-854.
Weiler I.J. and Greenough W.T., 1999. Synaptic synthesis of the Fragile X protein: Possible involvement in synapse maturation and elimination. Am. J. Med. Genet. 83: 248-252.
Weksberg R., Smith A.C., Squire J., and Sadowski P., 2003. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum. Mol. Genet. 12: R61-R68
Weksberg R., Nishikawa J., Caluseriu O., Fei Y.L., Shuman C., Wei C., Steele L., Cameron J., Smith A., Ambus I., et al., 2001. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 1 lpl5 alterations including imprinting defects of KCNQIOTI. Hum. Mol. Genet. 10: 2989-3000.
Weksberg R., Teshima I., Williams B.R., Greenberg C.R., Pueschel S.M., Chemos J.E., Fowlow S.B., Hoyme E., Anderson I.J., Whiteman D.A., et al., 1993. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum. Mol. Genet. 2: 549-556.
Wijmenga C., Hewitt J.E., Sandkuijl L.A., Clark L.N., Wnght T.J., Dauwerse H.G., Gruter A.M., Hofker M.H., Moerer P., Williamson R., et al., 1992. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat. Genet. 2: 26-30.
Willemsen R., Hoogeveen-Westerveld M., Reis S., Holstege J., Severij-nen L.A., Nieuwenhuizen I.M.. Schrier M., Van Unen L., Tassone E., Hoogeveen A.T., et al., 2003. The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum. Mol. Genet. 12: 949-959.
Wolff G.L., Kodell R.L., Moore S.R., and Cooney C.A., 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in A?? mice. Faseb J. 12: 949-957.
Xu G.L., Bestor T.H., Bourc’his D., Hsieh C.L., Tommerup N, Bugge M.. Hulten M.. QuX., Russo J.J.. and Viegas-Pequignot E., 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187-191.
Yntema H.G., Poppelaars F.A., Derksen E., Oudakker A.R., van Roos-malen T, Jacobs A., Obbema H., Brunner H.G., Hamel B.C., and van Bokhoven H., 2002. Expanding phenotype of XNP mutations: Mild to moderate mental retardation. Am. J. Med. Genet. 110: 243-247.
Young J.I.. Hong E.P., Castle J., Crespo-Barreto J.. Bowman A.B., Rose M.F., Kang D., Richman R., Johnson J.M., Berget S., and Zoghbi H.Y., 2005. Inaugural article: Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl. Acad. Sci. 102: 17551-17558.
Zeev B.B., Yaron Y, Schanen N.C., Wolf H., Brandt N., Ginot N., Shomrat R., and Orr-Urtreger A., 2002. Rett syndrome: Clinical manifestations in males with MECP2 mutations. J. Child Neurol. 17: 20-24.