4.1. Амфибии

Репрограммирование в нормальном развитии

У амфибий ядра и хромосомы ооцитов и яйцеклеток находятся в состоянии, совершенно ином, чем ядра и хромосомы соматических клеток. Зародышевый пузырек ооцита содержит максимально расправленные [expanded] хромосомы типа ламповых щеток, очень активные в отношении транскрипции (Callan and Lloyd, 1960), что, очевидно, отражает не только высокую долю транскрибируемых генов, но и плотную упаковку РНК-полимераз на ДНК большинства генов. Это исключительное транскрипционное состояние достигается во время раннего оогенеза и вероятно продолжается в яичнике на протяжении всей жизни взрослой самки. Зрелые спермин, напротив, максимально конденсированы и полностью неактивны в отношении транскрипции. Обычные гистоны хромосом в сперме заменены протаминами, которые обмениваются в ядрах спермиев, которые входят в яйцеклетку при оплодотворении, и ядра спермиев претерпевают необычайно быструю деконденсацию приблизительно за 20 минут. У амфибий отсутствуют процессы, эквивалентные инактивации Х-хромосомы и импринтингу, которые имеют место у млекопитающих Снижение уровня метилирования ДНК имеет место в период от оплодотворения до перехода к средней бластуле (5 часов), после чего этот уровень постепенно повышается по мере развития (Meehan, 2003). Резюмируя, можно сказать, что в нормальном развитии во время гаметогенеза и в течение нескольких часов непосредственно после оплодотворения имеют место существенные события репрограммирования ядра.

Наиболее очевидным изменением, которое претерпевают трансплантированные ядра у амфибий, является увеличение объема и дисперсия хроматина. В ядрах эмбриональных клеток это происходит быстрее, чем в ядрах дифференцированных илц взрослых клеток. Во всех отношениях эти трансплантированные ядра в конце концов принимают состояние ядер, присутствующих в яйцеклетках или ооцитах в норме. После трансплантации ядра наступают также изменения в синтезе нуклеиновых кислот. В ядрах неделящихся клеток, таких как клетки мозга взрослых животных, яйцеклетки быстро индуцируют синтез ДНК. Эмбрионы-трансплантаты, полученные в результате пересадок одиночных ядер в яйцеклетки, синтезируют рибосомную РНК и тРНК в такой же степени, что и эндогенные ядра эмбрионов, выращенных из оплодотворенных яиц. Картина транскрипции генов изменяется от характерной для донорских клеток к свойственной ранним эмбрионам; например, вся генная транскрипция выключается во время дробления эмбрионов-трансплантатов и затем реактивируется у выживших трансплантатов в соответствии с клеточным гипом. Мышечные гены экспрессируются в мышцах эмбрионов-трансплантатов даже в том случае, если они получены от ядер кишечника (Gurdon et al., 1984).

В случае пересадок ядер в ооциты в трансплантированных ядрах имеют место обширные изменения в транскрипции без какой-либо репликации ДНК. Например, у Xenopus ядра из клеток почки подавляют гены, специфичные для почки, и активируют гены, специфичные для ооцита. Некоторые из этих заново активированных генов специфичны для эмбриона, как и в случае ядер тимуса мыши, которые экспрессируют маркерный для стволовых клеток ген Oct-4, но подавляют активность специфичного для тимуса гена Thy-1 (Byrne et al., 2003). В заключение можно сказать, что у амфибий при пересадках ядер в яйцеклетки или ооциты наблюдается обширное репрограммирование транскрипции генов, так что ядра соматических клеток (и. в случае яйцеклеток, их митотическое потомство) изменяют свою транскрипцию в соответствии с транскрипцией клетки-реципиента.

Репрограммирование в клонах

С давних пор думали, что наиболее вероятное объяснение возрастающей доли связанных с развитием аномалий, наблюдаемой в экспериментах с пересадкой ядер у амфибий, связано с неполной репликацией ДНК. При нормальном развитии Xenopus пронуклеусы яйцеклетки и спермия начинают удвоение хромосом спустя 20 минут после оплодотворения, и оно завершается 20 минутами позже. В противоположность этому ядрам делящихся клеток в культуре требуется около 6 часов для завершения одного раунда репликации ДНК. Неудивительно поэтому, что часто можно наблюдать продолжение синтеза ДНК пересаженными ядрами соматических клеток гораздо дольше 40 минут после инъекции ядра — вплоть до начала конденсации хромосом для первого митоза. В результате репликция хромосом может быть неполной, и неполностью реплицированные хромосомы разрываются на части, когда трансплантированные ядра вынуждены вступать в свой первый митоз. Фрагменты разорванных хромосом наблюдали в эмбрионах, полученных в результате пересадки ядер (Di Berardino and Hoffner, 1970), и эта несовместимость между скоростью репликации ДНК и клеточного деления в зиготе по сравнению с соматическими ядрами, приводящая к анеуплоидии, по-видимому, скорее всего объясняет многие аномалии развития эмбрионов, полученных путем пересадки ядер, и в особенности высокую долю яйцеклеток, вообще неспособных пройти регулярное дробление; эти последние могут составить до 75 % всех яиц, получивших ядра от неделящихся дифференцированных клеток. Было отмечено, что серийные пересадки ядер из частично дробящихся эмбрионов, полученных в результате первой пересадки, часто дают нормальное развитие головастиков (см. выше). Это хорошо объясняется тем, что инкубация ядер соматических клеток в экстракте из яйцеклеток, находящихся в фазе митоза, значительно увеличивает число сайтов начала репликации ДНК, тем самым давая таким ядрам возможность завершить репликацию хромосом быстрее, чем это могут ядра из таких терминально дифференцированных клеток, как эритроциты (Lemaitre et al., 2005).

Два других предположения могут помочь объяснить аномалии ядерных трансплантатов, которые возникают после начала зиготической транскрипции при переходе к средней бластуле. Первое связано с количественной нерегулярностью активации ранних зиготических генов (Byrne et al., 2003), а второе — с сохранением специфичной для донора экспрессии генов в некорректной зародышевой линии эмбрионов-трансплантатов (см. ниже). Однако не было показано, что эти отличия от нормальной экспрессии генов прямо отвечают за наблюдаемые аномалии развития.

Механизмы репрограммирования

Большие количества и крупные размеры яиц и ооцитов амфибий вдохновили исследователей на попытки понять молекулярные основы репрограммирования. Наиболее предпочтительным путем было получение бесклеточных экстрактов, с помощью которых можно было бы воспроизвести in vitro события, происходящие после пересадки ядер в живые яйцеклетки и ооциты. Последовательное обеднение этих экстрактов могло бы позволить идентифицировать необходимые компоненты. Этот подход оказался особенно успешным при идентификации компонентов яйцеклетки, инициирующих синтез ДНК. В особенности можно отметить идентификацию нуклеоплазмина (Laskey etal., 1978; Philpott et al., 1991), присутствующего в больших количествах компонента яйцеклетки Xenopus, который может деконденсировать спермий и стимулировать обмен гистоновых белков. Такие же процессы имеют место, когда соматические ядра добавляются в экстракты из яйцеклеток (Dimitrov and Wolffe, 1996; Tamada et al., 2006). Другие компоненты экстракта яйцеклеток, возможно вносящие вклад в процесс репрограммирования ядра, включают комплекс ремоделинга ISW1 (Kikyo et al., 2000) и белки зародышевой клетки ERGY2, функция которых — обратимая разборка ядрышек (Gonda et al, 2003). Было высказано предположение, что ремоделирующий комплекс BRG-1 может играть роль в яйцеклетках и у ранних эмбрионов путем пермеабилизации и ресилинга [by permeabilizing and resealing] ядер в экстрактах (Hansis et al., 2004). Эти опыты трудно интерпретировать, потому что пока еще не известно, чтобы бесклеточные экстракты были способны инициировать транскрипцию ядер. Поэтому лучшее, что можно сделать, — это воздействовать на ядра in vitro и затем пересадить их в живой ооцит, чтобы испытать на транскрипцию (Byrne et al., 2003; Tamada et al., 2006).

В настоящее время представляется, что для успешного репрограммирования ядер необходимы три этапа: (1) удаление эпигенетических меток на ДНК или белках, которые характеризуют данное дифференцированное состояние; (2) обеспечение транскрипционными факторами, необходимыми для тех генов, которые должны быть заново экспрессированы; и (3) деконденсация хроматина для того, чтобы транскрипционные факторы получили доступ к генам, на которые они действуют.