3.1. Структура и функция центромеры у разных эукариот
Исследования, проведенные на дрожжах S. cerevisiae в 1980-е годы, привели к первому клонированию и анализу эукариотной центромеры. Было показано, что структура размером 125 п.н., присутствующая на всех 16 хромосомах S. cerevisiae, необходима и достаточна для нормального функционирования центромеры (Bloom et al., 1989); даже однонуклеотидные изменения в высококонсервативных элементах I и III приводили к полной утрате функции. Таким образом, идентичность и воспроизведение центромеры у этого одноклеточного эукариотического организма определяются нуклеотидной последовательностью ДНК.
Надежда на то, что аналогичные механизмы, базирующиеся на нуклеотидной последовательности, могли бы регулировать идентичность центромеры у других эукариот, впервые была развеяна исследованиями на другом «простом» эукариотическом организме, S. pombe. Центромерные последовательности у этих дробянковых дрожжей структурно более крупные и более сложные, чем у S. cerevisiae (Clarke et al., 1986; Nakaseko et al., 1987). Негомологичные последовательности «центрального кора» длиной 4—5 т.п.н., являющиеся сайтами формирования кинетохора, фланкированы инвертированными повторами различных классов, общими для трех хромосом. Минимум 25 т.п.н., содержащие неповторяющийся центральный кор, внутренние повторы и часть внешних повторов, абсолютно необходимы для функционирования центромеры и стабильной передачи хромосом (Baum et al., 1994). Достаточная центромерная функция наблюдается для трансфицированных плазмидных конструктов, несущих центральный кор плюс внутренние повторы (т.е. центральный домен) и два фланкирующих внешних повтора. Интересно, что делеция внутренних повторов нарушает расхождение сестринских хроматид в мейозе, демонстрируя тем самым, что центромерные районы играют роль в процессах, отличающихся от сборки кинетохора. Действительно, и кинетохор, и домены когезии тесно сцеплены и важны для правильного расхождения хромосом.
Хотя центромерные районы у многоклеточных эукариот даже больше и более сложные, чем у S. pombe (сотни или тысячи тысяч пар оснований повторяющихся ДНК), общая организация и функционирование центромер дробянковых дрожжей послужили превосходной моделью центромер у млекопитающих, растений и насекомых. Центромеры у этих организмов заключены в крупные гетерохроматиновые блоки, присутствующие на каждой хромосоме, которые преимущественно состоят из сателлитных ДНК (простые, короткие повторы) и транспозонов. Эти центромерные районы составлены из субдоменов, отвечающих за различные функции, прежде всего за формирование кинетохора и сестринскую когезию. Центромерные последовательности, однако, не консервативны у эукариот или даже у разных хромосом отдельного вида. Именно эпигенетический состав функциональных субдоменов центромеры демонстрирует консерватизм, особенно по составу гистоновых вариантов и паттернам модификаций гистонов, которые, по-видимому, регулируются эпигенетически
У нематоды С. elegans и у других видов голоцентрические хромосомы рекрутируют и собирают центромерные белки по всей длине хромосомы (Demburg, 2001). Специфические для червя последовательности не являются, очевидно, необходимыми, поскольку конкатемеры лямбда и ДНК многих других типов стабильно передаются. Белки рекрутируются «пакетами» [«bundles»] в профазе, но к метафазе распределяются ровным слоем на обращенной к полюсу поверхности хромосомных плеч, заставляя предполагать, что многие области генома С. elegans могут поддерживать сборку кинетохора в эпигенетическом режиме. Несмотря на очевидные различия с моноцентрическими хромосомами, возможно, что организационные и структурные атрибуты, такие как ЗБ-спирализация или выпетливание ДНК CEN, являются консервативными (см. раздел 3.3 далее в этой главе).