1.2. Какие элементы требуются для хромосомной наследственности?

И митотические, и мейотические клеточные деления нуждаются в активности специфических хромосомных элементов и связывающихся белков для выполнения точной дупликации генома и расхождения хромосом (рис. 14.2).

Рис. 14.1. Стадии митоза и мейоза

(а) Микрофотографии клеток Drosophila показывают поведение хромосом (синий цвет, описание см. ниже), микротрубочек (зеленый цвет) и центромер (красный цвет) в интерфазе и митозе, (б) Поведение хромосом показано для профазы мейоза I у кукурузы; это стадия, на которой происходят спаривание гомологов, синапсис и рекомбинация (микрофотографии предоставлены Hank Bass и Shaun Murphy, Университет штата Флорида). Ключевые функции хромосом на каждой стадии показаны внизу (синим шрифтом). Впоследствии, в анафазе мейоза 1, гомологи расходятся к противоположным полюсам, завершая редукционное деление. Сестринские хроматиды разделяются лишь во время мейоза II (рис. 14.9)

Репликация ДНК начинается в «ориджинах» [точках начала репликации], которые у большинства эукариот не строго зависят от нуклеотидной последовательности (обсуждается в разделе 2 этой главы). В митотически делящихся клетках сцепление сестринских хроматид становится затем видимым по всей длине этих хроматид, хотя в перицентромерном гетерохроматине концентрация когезинов более высокая. Центромеры — это большие участки, состоящие из ДНК и специальных белков хроматина, которые служат в качестве фундамента для формирования кинетохора и играют ключевую роль в прикреплении веретена и нормальной сегерегации мейотических и митотических хромосом (обсуждается в разделе 3 этой главы). У большинства эукариот имеется одна и только одна центромера на хромосому. Утрата центромеры приводит к нарушениям в прикреплении веретена и к утере хромосом, а присутствие более чем одной центромеры ведет к прикреплению одной и той же хроматиды к обоим полюсам, что вызывает образование хромосомных мостов и фрагментацию в анафазе. Изредка организмы (например, круглый червь Caenorhabditis elegans) содержат «полицентрические», или «голоцентрические» хромосомы, в которых кинетохоры присутствуют во многих районах (см., например, рис. 13.5). Такие хромосомы используют специальные механизмы для обеспечения прикрепления и расхождения сестринских хроматид к противоположным полюсам. Теломеры — это специализированные хроматиновые структуры, находящиеся на концах хромосом для защиты их от деградации или рекомбинации и для обеспечения полной дупликации ДНК. Для мейотической сегрегации требуются также центромеры, теломеры, сцепление (когезия) и «ориджины» репликации. Однако для обеспечения спаривания гомологов и их расхождения в мейозе I необходимы некоторые дополнительные элементы и изменение поведения центромер (обсуждется в разделе 4 этой главы).

Рис. 14.2. Элементы хромосомной наследственности

Диаграмма показывает элементы хромосомы, существенные для нормальной дупликации («ориджины» репликации) и наследования (центромеры, сцепление, теломеры) в митозе и мейозе. Для нормального расхождения хромосом в мейозе требуются также сайты спаривания гомологов (не показаны) и, в большинстве случаев, рекомбинация

Сама природа хромосомной наследственности предполагает, что спецификация и локализация элементов наследственности должны быть «зашиты» в нуклеотидной последовательности ДНК. Поэтому вызывает удивление, что многие элементы, в том числе перечисленные в этом разделе, вместо этого регулируются эпигенетически, особенно у многоклеточных эукариот Говоря коротко, элементами, предрасположенными к эпигенетической регуляции для обеспечения надежной хромосомной наследственности, являются «ориджины» репликации ДНК, теломеры, сайты сцепления (когезии) сестринских хроматид и сайты спаривания гомологов.