3.2. Центромерные последовательности не являются необходимыми или достаточными для формирования и функционирования кинетохора

Большая величина и сложность центромерных последовательностей у многоклеточных эукариот сделали затруднительным анализ потребностей в нуклеотидной последовательности ДНК с помощью определенных конструктов, столь успешно использовавшихся в исследованиях на дрожжах. Тем не менее, путем трансфекции клеток культуры ткани набором сателлитных ДНК были созданы с низкой частотой искусственные хромосомы человека (HACs), но они обнаружили высокий уровень митотической нестабильности (Rudd et al., 2003). Мы знаем, однако, что HACs образованы путем конкатемеризации введенных наборов сателлитов, и тем не менее некоторые альф?-сателлитные наборы не могут формировать сентромеры de novo, что заставляет предположить потребность в множественных, неизвестных этапах или факторах. Более недавние исследования показали, что уникальные свойства и компоненты иентромерного хроматина (как объясняется в разделе 3.3 далее в этой главе) имеются в HACs как в сателлитных наборах, так и в нецентромерных последовательностях (например, последовательностях плазмидного вектора и селектируемого маркера) (Lam et al., 2006). Таким образом, остается все еще неясным, насколько специфические последовательности ДНК достаточны для сборки и поддержания функциональных центромер человека.

Первое указание на то, что идентичность и воспроизведение центромер регулируются эпигенетически, было получено в исследованиях «минимальных» центромерных конструктций у S. pombe (Steiner and Clarke, 1994). Небольшая доля трансформантов, полученных с помощью конструктов, обнаруживала переключение с редуцированной центромерной функции к высоко «активному» центромерному функционированию (0,6 % клеток), что впоследствии могло воспроизводиться в линии на протяжении многих поколений. Таким образом, одни и те же нуклеотидные последовательности ДНК могут демонстрировать два функционально различных, наследуемых состояния, аналогично наблюдениям эпигенетических влияний на генную экспрессию при PEV (глава 5) или ТРЕ (глава 4).

Другие наблюдения заставляют предполагать главную роль эпигенетических механизмов в детерминации идентичности центромер и формировании кинетохоров у многоклеточных эукариот. Во-первых, нуклеотидные последовательности ДНК, в норме ассоциированные с центромерами, не достаточны для функционирования. Например, только подгруппа гетерохроматиновых сателлитных последовательностей мыши и человека связана с центромерной функцией (Lam et al., 2006). Кроме того, в функциональных хромосомах с двумя участками центромерных сателлитов (дицентрики), наблюдаемых у мух и у человека, один из этих участков теряет способность формировать кинетохор (Sullivan and Willard, 1998). Во-вторых, центромерные последовательности не являются необходимыми для формирования кинетохора, поскольку нецентромерная ДНК может приобретать и надежно воспроизводить центромерную функцию благодаря процессу, известному как «формирование неоцентромеры» (рис. 14.5а). У человека были идентифицированы многочисленные функциональные неоцентромеры, и анализ нуклеотидной последовательности показал, что эти новые районы формирования кинетохоров не приобрели сателлитных ДНК. Однако участки, фланкирующие новый кинетохор, приобрели эпигенетические свойства, сравнимые с соответствующими районами в эндогенных центромерах (т.е. перицентрическом хроматине), такими как метилирование H3JT9 и связывание НР1 (Lo et al., 2001).

Хотя механизм формирования неоцентромер у человека не известен, в модельной системе неоцентромеры были созданы экспериментально. У Drosophila неопентромеры получаются из минихромосом, когда помещаются рядом нецентромерная ДНК и эндогенная центромера (рис. 14.56) (Maggert and Karpen, 2001). Таким образом, у Drosophila для активации неоцентромеры требуется близость к функциональной центромере, заставляя предполагать, что одним из механизмов приобретения центромеры является распространение центромерных белков в с/^-конфигурации на соседние, нецентромерные участки. Коль скоро это распространение произошло, центромерная функция затем воспроизводится в этом новом сайте эпигенетически. Интересно, что формирование неоцентромеры подавляется, когда между эндогенной центромерой и участком формирования неоцентромеры присутствует гетерохроматин, заставляя предполагать, что в определении величины центромеры играют роль дополнительные эпигенетические механизмы.

Наконец, признаком эволюции являются хромосомные перестройки. Эти изменения сопровождаются приобретением, утратой и перемещениями центромер по отношению к нуклеотидным последовательностям генома (Ferreri et al., 2005). Такую пластичность легче всего объяснить, если идентичность центромеры определяется эпигенетически, как это описано в разделе 3.5.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК