2.3. Эпигенетический контроль структуры и функции теломер
Концы линейных эукариотических хромосом являются специализированными сайтами, известными как теломеры; они выполняют три существенные функции. Во-первых, теломеры обеспечивают включение самых дистальных концов хромосом в репликацию ДНК, решая тем самым «проблему репликации концов» (Lue, 2004). Во-вторых, теломеры защищают концы хромосом от деградации и подавляют слияния с другими хромосомами. В-третьих, у многих, но не у всех, организмов теломеры облегчают спаривание хромосом в мейозе. У большинства эукариот теломеры состоят из простых, коротких повторов, которые восстанавливаются ферментом теломеразой. Теломерные функции регулируются как механизмами на основе нуклеотидных последовательностей, так и эпигенетическими механизмами.
Проблема репликации концов возникает в связи с тем, что ДНК-полимеразе требуется праймер для инициации синтеза в направлении 5’ к 3’ «отстающей нити»; следствием этой ограниченной активности фермента оказывается тот факт, что репликация не может проходить до самого конца хромосомы (Lue, 2004). Для преодоления этой проблемы используются два механизма. Преобладающий механизм, используемый большинством организмов, в том числе дрожжами, млекопитающими и растениями, включает необычный ферментативный комплекс, известный как теломераза. Теломеры у большинства эукариот состоят из простых повторов длиной 6 п.н., распространяющихся на расстояние от десятков до сотен тысяч пар оснований. Теломеразные комплексы содержат энзиматическую активность, подобную обратной транскриптазе, а также РНК, обладающими гомологией с теломерными повторами. Суть дела состоит в том, что репликация конца выполняется путем «нацеливания» этого комплекса на теломерные повторы с помощью РНК-компонента; за этим следует обратная транскрипция (3’ к 5’), производящая новые повторы. Интересно, что утрата теломеразной активности и укороченные теломеры коррелируют с клеточным дряхлением и старением и, наоборот, раковые клетки обнаруживают повышенную теломеразную активность и удлиненные теломеры (Blasco, 2005).
Существуют также независящие от теломеразы механизмы поддержания хромосомных концов (Louis and Vershinin, 2005). Одна хорошо изученная альтернативная система, по-видимому, ограничена дрозофилой и другими двукрылыми. У этих организмов теломераза не идентифицируется, а концы не содержат простых, коротких повторов, обнаруживаемых у большинства других эукариот. Вместо этого концы хромосом Drosophila состоят из перетасованныхкластеровразличныхретротранспозонов типа non-LTR (LTR — длинный терминальный повтор), размеры которых варьируют от 3 до 5 т.п.н., и других повторов (TAS — telomere-associated repeats) (Biessmann and mason, 2003). Эти транспозоны кодируют ферменты типа обратной транскриптазы (отсюда re/rot ransposon), позволяя предполагать, что здесь имеется эволюционное родство с более стандартными теломеразными механизмами. Основное различие, однако, заключается в том, что хромосомы Drosophila не реплицируются до самого конца; они теряют примерно 70 п.н. на мушиное поколение, т.е. примерно то самое количество, которое ожидается в связи с проблемой репликации концов. Эта утрата не выбывает делеции существенных генов, потому что домены теломерных и субтеломерных повторов имеют длину около 50—100 т.п.н., и потребовалось бы много поколений, чтобы потерялось достаточное количество ДНК и были достигнуты участки с генами. Эта утеря теломерных последовательностей компенсируется, однако, нечастым добавлением ретротранспозонов типа non-LTR (Biessmann and Mason, 2003).
Эпигенетическая регуляция затрагивает функции теломер и экспрессию генов, находящихся в этом районе. «Голая» теломерная ДНК или внутренние DSBs приводят к хромосомным слияниям и анеуплоидии. Барбара МакКлинток (Barbara McClintock) первой описала явление, известное как цикл «разрыв-слияние-мостик». в котором слияния между разорванными хромосомами или слияния концов хромосом производят дицентрические хромосомы и анафазные мосты, которые генерируют дальнейшие разрывы. Доказательства эпигенетической регуляции теломерной защиты концов хромосом вытекает из исследований на Drosophila, показавших, что она не зависит от нуклеотидных последовательностей ДНК. Оторванный конец хромосомы у Drosophila может вести себя как DSB в одном поколении, но действует как полностью функциональная теломера впоследствии, без какого-либо добавления ретротранспозонов или каких-либо изменений последовательности (Ahmad and Golic, 1998). Более того, любой конец, созданный у Drosophila (известно как терминальные делеции), может быть упакован как теломера и защищен от событий слияния (Karpen and Spradling, 1992). Кроме того, у Schizosaccharomyces pombe теломерные функции зависят от белка Tazl (Miller and Cooper, 2003) и теломерного хроматина, и эта зависимость не связана с каноническими теломерными повторами (Sadaie et al., 2003).
Теломерные районы содержат модификации хроматина и обладают свойствами, сходными с перицентромерным гетерохроматином, описанным в разделе 3 далее в этой главе. Характеристика эпигенетических механизмов, регулирующих теломерные и субтеломерные районы, была получена в исследованиях экспрессии генов у дрожжей и Drosophila, но наблюдается также у человека. Сайленсинг эухроматиновых генов, вставленных в теломерные районы, варьирует. Это явление называется теломерным эффектом положения (ТРЕ, telomere position effect); оно похоже на эффект положения мозаичного типа (PEV, position-effect variegation), индуцируемый соседним центромерным гетерохроматином у мух и S. pombe (детали см. в главах 5 и 6, соответственно). У почкующихся дрожжей многие факторы, связанные с хроматином, такие как белки SIR, влияющие на сайленсинг типа спаривания, влияют также на сайленсинг, индуцируемый теломерой (глава 4). Удивительно, что почти ни один из генов, регулирующих PEV у Drosophila (Супрессоры и Энхансеры Мозаицизма, Su(var) s и E(var)s, описанные в главе 5), никак не влияет на теломерный сайленсинг. Это заставляет предположить, что PEV и ТРЕ опосредованы, по крайней мере отчасти, разными механизмами (Cryderman et al., 1999; Donaldson et al., 2002).
Гетерохроматиновый белок 1 (HP1, продукт гена Su(var)) и метилирвание H3K9, которые являются ключевыми компонентами сайленсинга, опосредованного хроматином (глава 8), присутствуют в теломерах Drosophila и необходимы для удлинения теломер (рис. 14.4) (Perrini et al., 2004). Результатом делеции НР1 или его партнера по связыванию НОАР (сокращение для НР1/ ORC-associated protein) оказывается очень высокая частота теломерных слияний (Cenci et al., 2003). НР1 обычно рекрутируется к хроматину благодаря своему сродству к метилированному H3K9 через хромодомен. Интересно, что кэпирование теломеры белком НР1 не зависит от метилирования H3K9; это позволяет предполагать, что защита концов опосредуется альтернативным механизмом, в котором участвует прямое связывание с теломерной ДНК или нетеломерными последовательностями, присутствующими в терминальных делециях (рис. 14.4а) (Perrini et al., 2004). Одна из привлекательных моделей сводится к тому, что НР1 связывается и защищает концы независимо от нуклеотидной последовательности ДНК, затем рекрутирует неизвестную НКМТ H3K9; локальное метилирование H3K9 могло бы затем рекрутировать к этому участку большие количества НР1, что стимулирует распространение теломерного сайленсинга (рис. 14.4). Этот механизм, вероятно, не требует средств RNAi, участвующих в установлении и сайленсинге центромерного гетерохроматина (глава 8), но этот компонент модели нуждается в прямой проверке.
Недавние исследования показали, что у млекопитающих зависимое от теломеразы удлинение теломеры также регулируется эпигенетически (Lai et al., 2005). Например, мыши с делецией обеих копий HKMTs H3K9. Suvar39hl/2, имеют теломеры с редуцированными уровнями H3K9me2 и H3K9me3 и демонстрируют аномально длинные теломеры (рис. 14.46) (Garcia-Cao et al., 2004). Эти результаты позволяют предполагать, что активность НКМТ Suvar39hl/2 превращает модификацию H3K9me в ди- и триметилированные формы, облегчая связывание гомологов НР1, СЬх 3 и 5, которые необходимы для сборки нормальной структуры теломерного хроматина и регуляции длины теломер.
Наконец, эпигенетические модификации, происходящие в теломерах, влияют также и на мейотическую рекомбинацию и передачу хромосом. Например, у почкующихся дрожжей утрата Ndjl, теломерного белка, необходимого как для формирования теломерного букета (т.е. образования кластера), так и для мейотической рекомбинации (Wu and Burgess, 2006), приводит к резкой редукции частоты теломерных делеций (Joseph et al., 2005). Джозеф и сотрудники предполагают что Ndj 1 облегчает теломерную делецию, «стимулируя взаимодействия теломер в ходе мейоза, что приводит к эффективному увеличению содержания факторов, необходимых для делеции». Аналогичным образом, мутанты, дефектные по транскрипционному сайленсингу генов, помещенных поблизости от теломер, демонстрируют серьезные нарушения в мейотическом спаривании и рекомбинации, что приводит к неправильной агрегации во время мейоза (Nimmo et al., 1998). Таким образом, эпигенетические события, которые контролируют как длину теломер, так и транскрипционную компетентность, используются также в процессах, контролирующих поведение хромосом в ходе мейоза.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК