2.2. Белки trxG, ковалентно модифицирующие нуклеосомные гистоны

Второй распространенный способ регулирования экспрессии генов включает ковалентную модификацию аминотерминальных «хвостов» коровых гистонов, составляющих белковый компонент нуклеосомы. Эти «хвосты», выступающие с поверхности нуклеосомы, могут опосредовать взаимодействия с другими нуклеосомами, а также с весьма разнообразными структурными и регуляторными белками. Ковалентная модификация гистоновых «хвостов» с помощью ацетилирования, метилирования или фосфорилирования может помогать «нацеливать» регуляторные комплексы на хроматин и может также непосредственно изменять способность нуклеосом компактизироваться в репрессивные структуры путем изменения заряда на этих «хвостах». Ковалентная модификация могла бы также обеспечивать метку, чтобы способствовать поддержанию специфического регулируемого состояния (поскольку ковалентно модифицированные гистоны обладают возможностью разделяться на две дочерние нити и тем самым воспроизводят информацию, содержащуюся в ковалентной метке) и передавать ее как материнской, так и дочерним клеткам после репликации. Остаются ли гистоны связанными с одной или с обеими дочерними нитями после репликации — это ключевой вопрос для потенциальных механизмов эпигенетического регулирования; вопрос этот остается спорным, по большей части в связи с поиском методов, которые позволили бы точно прослеживать индивидуальные гистоны в живых клетках.

Несколько белков trxG способны ковалентно модифицировать «хвосты» гистонов, и эти белки часто обнаруживаются в комплексах, способных осуществлять более чем один тип реакций модификации. Например, TRX Drosophila и его аналоги у других организмов метилируют гистон H3 по лизину 4 (H3K4): эта ковалентная метка прочно ассоциирована с активными генами у самых разных организмов, в том числе у дрожжей, мух и человека. Второй белок trxG, ASH1 (см. ниже), также обладает H3K4-метилтрансферазной активностью (Beisel et al., 2002; Byrd and Sheam, 2003). Подразумевалось, что H3K4-метилирование связано с поддержанием активной экспрессии генов у дрожжей, исходя из времени его появления и исчезновения на активных генах (Santos-Rosa et al., 2002; Pokholok et al., 2005). Тот факт, что члены trxG обладают этой модификационной (в отношении гистонов) активностью, еще больше связывает метку H3K4 с поддержанием активного состояния.

У дрожжей и у человека аналоги TRX обнаруживаются в комплексе, который содержит также третий белок группы trxG, Ash2, по последовательности не родственный Ash1 Дрожжевой гомолог trithorax, Setl, обнаруживается в комплексе (COMPASS или Set 1C), который имеет величину приблизительно 400 кДа и содержит пять других белков кроме Setl и Ash2 (Miller et al., 2001; Roguev et al., 2001). Единственной известной биохимической активностью этого комплекса является метилирование H3K4; пока еще не ясно, какова могла бы быть функция каждого из других белков, хотя один компонент мог бы способствовать воспроизведению метальной метки (см. ниже).

У человека имеются три гомолога TRX, называемые MLL1, MLL2 и hSETl. Белок MLL1 привлек наибольшее внимание в биохимических анализах и обнаруживается в большом комплексе (>10 членов), который содержит также человеческий гомолог ASH2 (Hughes et al., 2004; Yokoyama et al., 2004). Этот комплекс и дрожжевой комплекс оба содержат повторяющийся белок [repeat protein] WD40, который у человека называется WDR5 (Dou et al., 2005; Wysocka et al., 2005). Недавно было показано, что белок WDR5 может связываться с гистоном H3, который был метилирован по лизину 4 (Wysocka et al., 2005). Таким образом, связывание этого белка с меткой, созданной комплексом MLL1, в котором он находится, могло бы дать механизм для облегчения распространения этой метки. Это сходно с предположениями, сделанными относительно репрессивных комплексов, метилирующих H3K9, которые содержат НР1, белок, специфически связывающийся с метилированным К9 (дополнительные детали см. в главах 5 и 6).

Имеются данные, полученные как на Drosophila, так и на человеке, о том, что комплекс, содержащий TRX/ MLL, участвует также в ацетилировании. У человека MLL ассоциирован с ацетилтрансферазой MOF, которая ацетилирует лизин 16 гистона Н4, что является еще одной модификацией, связанной в норме с активацией (Dou et al., 2005). У мух TRX ассоциирован с dCBR — ацетилтрансферазой с широкой специфичностью, которая участвует в активации (Petruk et al., 2001). Ацетилирование могло бы работать совместно [synergistically] с метилированием H3K9, направляя активное состояние после функционирования этих комплексов trxG. Известно также, что ацетилирование предотвращает метилирование таких остатков, как H3K9 и H3K27, которые направляют репрессию матрицы.

Белок ASH1, еще один член trxG, тоже является метилтрансферазой гистонов, которая метилирует H3K4 (Beisel et al., 2002; Byrd and Sheam, 2003). Состав ни у одного комплекса, содержащего ASH1, не был установлен; непонятно также, как координируются активности ASH1 и комплексов, содержащих TRX/MLL1/SET1. Однако наблюдали также, что ASH1 колокализуется и ассоциируется с семейством ацетилтрансфераз СВР (Bantignies et al., 2000), что опять-таки предполагает, что метилирование и апетилирование идут рука об руку.

Существуют захватывающие, но все еще остающиеся без ответа вопросы относительно того, каким образом ковалентная модификация гистонов могла бы вносить вклад в функцию trxG. Какую функциональную роль играют метки? Ковалентная модификация может вносить свой вклад в эпигенетическое регулирование с помощью широкого спектра механизмов. Метки метилирования и ацетилирования могли служить для непосредственного изменения компактизации хроматина (иногда это обозначается как cis-эффекты, как на рис. 3.8). На способность хроматина входить в компактизированное состояние, которое, как обычно принимается, является репрессивным для транскрипции, влияет распределение зарядов на гистоновых «хвостах». Модификации, происходящие на лизине (например, ацетилирование), могут устранять положительный заряд, в норме обнаруживаемый с этим остатком, и, следовательно, могут прямо снижать способность нуклеосом формировать компактные структуры, повышая таким образом способность матрицы к транскрипции.

Предположили, что ковалентные метки создают сайты прочного связывания для комплексов, управляющих [direct] транскрипционной активацией. Эти ковалентные модификации способны создавать специфические «выросты» [«knobs»] на поверхности нуклеосом, которые соответсвуют «карманам» на комплексах, стимулирующих активацию, увеличивая таким образом энергию связывания и функцию этих комплексов. Например, ацетилирование гистоновых «хвостов» увеличивает связывание гомологами белка BRM, стимулируя таким образом АТФ-зависимый ремоделинг ацетилированных матриц (Hassan et al., 2001). Механизм этого типа, часто обозначаемый как «гистоновый код» или trans-эффекты ковалентных модификаций гистонов, потенциально может быть центральной эпигенетической функцией. Нужны дальнейшие исследования, чтобы определить, какие именно метки, созданные белками trxG, усиливают связывание каких именно комплексов, определить степень, с какой энергия связывания с одним модифицированным остатком может влиять на функцию и «нацеливание», и определить временной порядок добавления этих меток и возможность их поддержания при митозе.

Оборотная сторона этого механизма заключается в том, что эти метки могли бы подавлять связывание репрессивными комплексами. Ковалентная метка на ключевом остатке, необходимом для оптимального связывания каким-то репрессивным комплексом, могла бы сильно ингибировать связывание этим репрессивным комплексом. Например, известно, что связывание репрессивными комплексами увеличивается метилированием гистона H3 по К9 и К27 (Khorasanizadeh, 2004). Ацетилирование этих остатков и блокировало бы метилирование, и создавало бы «вырост» неправильной формы на гистоне, ослабляющий связывание этим репрессивным комплексом. Таким образом, способность модификаций влиять на функцию других комплексов может работать в обоих направлениях [cut in both directions], увеличивая действенность этого потенциального способа эпигенетической регуляции.

Эти механизмы не только не являются взаимоисключающими, но вероятно работают совместно, помогая поддерживать активное состояние. Метки, которые химически увеличивают возможность формировать компактное состояние (cis-эффект), могли бы также увеличивать способность комплексов связываться (trans-эффект) и еще более [further] стимулировать компактное состояние. Наоборот, метки которые химически уменьшают компактизацию, могли бы увеличивать связывание комплексов, которые также декомпактизируют нуклеосомы. Это механистически экономное использование ковалентных меток для изменения нескольких характеристик структуры хроматина и способности регуляторных комплексов связываться могло бы создавать мощные средства поддержания активного состояния.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК