8. H2AZ играет роль в регулировании транскрипции
Возрождение интереса к вариантам гистонов оказалось особенно мощным в случае H2AZ (или H2A.Z) (Karnakaka and Biggins, 2005). H2AZ почти повсеместен; он дивергировал от анцестрального Н2А на ранних этапах эволюции эукариот. В соответствии с этим отдельным происхождением генетические эксперименты с почкующимися дрожжами и мухами показали, что гистоны Н2А и H2AZ возникли для выполнения отдельных, неперекрывающихся функций. H2AZ является необходимым гистоном у большинства организмов, от ресничных простейших до млекопитающих. Однако почкующихся и дробянковых дрожжей делеция гена H2AZ дает жизнеспособные клетки, хотя эти нуль-мутанты обладают разнообразными фенотипами. Эти свойства облегчили его генетическую и биохимическую характеристику у дрожжей.
У большинства протестированных на сегодня организмов H2AZ составляет приблизительно 10 % от общего белка Н2А. Он широко, но не однородно распределен по всем хромосомам. Это наиболее элегантно выглядит в случае политенных хромосом Drosophila, где он образует отчетливый паттерн бэндинга. Результаты опытов по иммунопреципитации хроматина с использованием дрожжевых и мышиных клеток согласуются с этим паттерном. Хотя H2AZ преимущественно локализуется в промоторных участках генов дрожжей, эта специфичность не соблюдается для всех сайтов его откладки. У Drosophila сколько-нибудь различимая связь между локализацией H2AZ и экспрессией генов отсутствует. Таким образом, хотя механизм откладки H2AZ известен (обсуждается ниже), правила, определяющие места его концентрации, в настоящее время неясны.
Ряд наблюдений указывают на важную роль в регулировании экспрессии генов (Kamakaka and Biggins, 2005). Мутационный анализ почкующихся дрожжей показал, что функция H2AZ частично является избыточной с двумя разными классами глобальных транскрипционных факторов, комплексом ремоделинга нуклеосом, Swi/Snf, и комплексом модификации гистонов, SAGA. Хотя утрата по отдельности функции H2AZ, Swi/Snf или SAGA не лишает клетку жизнеспособности, одновременная потеря любой комбинации двух путей детальна. Дополнительные генетические и биохимические эксперименты позволяют предположить, что эта роль включает и функции как в инициации, так и в элонгации транскрипции (дополнительные детали см. в главе 10). Более того, баланс откладки H2AZ причинно связан с эпигенетикой через его роль как фактора антисайленсинга Делеция гена H2AZ приводит к экстенсивному распространению «молчащего» хроматина внутрь от теломер, и этот дефект может быть подавлен дополнительной делецией генов, кодирующих сами факторы сайленсинга (рис. 4.7). Влияние делетирования H2AZ на глобальную экспрессию генов было протестировано с помощью микрочипов дрожжевых генов. Хотя большинство регулируемых генов обнаруживают пониженную экспрессию в нуль-мутантах по H2AZ, существенная доля их демонстрирует увеличение экспрессии. Поскольку все еще не ясно, какие изменения отражают прямую регуляцию, а какие — косвенную, возможно, что нуклеосомы H2AZ функционируют как позитивно, так и негативно в регулировании транскрипции генов. Более того, неизвестно, лежит ли в основе этих разнообразных ролей H2AZ в транскрипции и гетерохроматине один унифицирующий механизм или же более сложное сочетание разных путей.
В противоположность современной картине, полученной для почкующихся дрожжей, в клетках млекопитающих H2AZ предпочтительно локализуется в гетерохроматиновых участках. Действительно, было показано, что он физически взаимодействует с белком НР1 (Heterochromatin associated Protein 1) (Fan et al., 2004). Хотя это могло бы наводить на мысль о возможной роли H2AZ в сайленсинге у многоклеточных животных, следует отметить, что у Drosophila подгруппа экспрессируемых генов, локализованных в гетерохроматине, действительно нуждается в НР1 для экспрессии (Weiler and Wakimoto, 1995). Если локализация H2AZ в клетках млекопитающих отражает аналогичный процесс, тогда четко установленные роли этого варианта в облегчении транскрипции и противодействии сайленсингу у дрожжей вероятно отражали бы общие фундаментальные свойства этого варианта. H2AZ может играть еще одну роль в эпигенетике расхождения хромосом. Одним из первых фенотипов, обнаруженных у нуль-мутантов по H2AZ, был дефект расхождения хромосом в митозе, наблюдавшийся у дробянковых дрожжей. Последующие эксперименты сделали эту связь более очевидной. Экспериментальная делеция H2AZ в клетках млекопитающих с помощью РНК-интерференции (RNAi) вызывает дефекты в перицентрической ассоциации НР1, нестабильность генома и нарушения в сегрегации хромосом (Kamakaka and Briggins, 2005). Аналогичным образом, у почкующихся дрожжей нуль-мутанты по H2AZ обнаруживают повышенную частоту потери хромосом в митозе и существенные генетические взаимодействия с генами, кодирующими известные компоненты центромеры и митотического веретена (Krogan et al., 2004). Остается формально возможным, что влияние H2AZ на расхождение хромосом является косвенным следствием его роли в установке программы транскрипции генов. Однако интригующая гипотеза заключается в том, что механизмы расхождения хромосом эволюционировали таким образом, чтобы использовать не только вариант H3, но и вариант Н2А.
Каким образом H2AZ влияет на транскрипционную компетентность, сайленсинг, гетерохроматин и, возможно, сегрегацию хромосом? Структура содержащей H2AZ нуклеосомы, полученная с высоким разрешением, позволяет выявить несколько уникальных свойств этого варианта (Suto et al., 2000). По сравнению с нуклеосомами Н2А H2AZ обладает расширенным кислотным пэтч-доменом на поверхности нуклеосомы, и это отличие, вероятно, имеет функциональное значение. Например, у Drosophila именно часть «докинг-домена» («docking domain») (рис. 13.2) взаимодействует с гистоном Н4 и определяет сегмент, существенный для функции. Далее, результаты мутационных исследований и экспериментов по связыванию in vitro свидетельствуют о том, что этот расширенный кислотный пэтч вносит основной вклад во взаимодействие нуклеосомы с НР1 (Dryhurst et al., 2004). Интересно, что НР1 содержит хромодомен, белковый мотив, который может связываться с H3, метилированным по лизину 9 (главы 3 и 4). Таким образом, Н2А2может действовать совместно с метилированием гистона H3, обеспечивая ассоциированным с хроматином белкам платформу для связывания. В дополнение к своему расширенному кислотному пэтчу H2AZ имеет пару остатков гистидина, координирующих дополнительный ион металла в этой структуре, который, in vivo, мог бы обеспечивать уникальный физиологический ответ, недоступный нуклеосомам, содержащим Н2А. Наконец, кристаллическая структура позволяет предсказать, что асимметричный гистоновый октамер, состоящий из одного главного димера Н2А•Н2В плюс одного вариантного димера H2AZ•Н2В, создавал бы конфликт белковых структур в петле 1 (рис. 13.2) и, по-видимому, вряд ли происходит in vivo.
В совокупности эти новые особенности нуклеосом H2AZ свидетельствуют в пользу того, что этот вариант должен придавать хроматину уникальные физические свойства. Это предсказание подтверждается экспериментально. Например, H2AZ может стабилизировать димертетрамерные взаимодействия в нуклеосоме, и порядки нуклеосом, составленных из нуклеосом H2AZ, могут обнаруживать усиленное сворачивание более высокого порядка и уменьшенную межмолекулярную агрегацию (Dryhurst et al., 2004). Таким образом, H2AZ, вероятно, модулирует функцию хроматина по меньшей мере тремя различными способами. Во-первых, он несомненно изменяет физические свойства своего хроматинового окружения, влияя таким образом на доступность или активность trans-действующих факторов. Во-вторых, как и в случае с другими гистонами, посттрансляционные модификации в его аминотерминальном и карбокситерминальном доменах, вероятно, обеспечивают уникальные docking-сайты для ассоциированных с хроматином белков (так называемые эффекты, с которыми мы познакомились в главе 3), или регулируемые изменения в плотности заряда (cis-эффекты). В-третьих, его ограниченная и специфическая откладка в хроматине, вероятно, «нацеливает» уникальные функции на специфические локусы.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК