Литература
Amir R.E., Van den Veyver LB., Wan M., Tran C.Q., Francke U., and Zoghbi H.Y., 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23: 185–188.
Antequera F. and Bird A., 1999. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr. Biol. 9: R661-667.
Aufsatz W., Mette M.F., van derWinden J., Matzke A.J., and Matzke M., 2002. RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. 99: 16499-16506.
Bell A.C. and Felsenfeld G., 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405: 482–485.
Bell A.C., West A.G., and Felsenfeld G., 1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98: 387–396.
Bestor T.H. and Ingram V.M., 1983. Two DNA methyltransferases from murine erythroleukemia cells: Purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. 80: 5559–5563.
Bird A.R., 1978. Use of restriction enzymes to study eukaryotic DNA methylation. II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118: 48–60.
Bird A.R., 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8: 1499–1594.
Bird A.P. and Southern E.M., 1978. Use of restriction enzymes to study eukaryotic DNA methylation. I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 118: 27–47.
Bird A.P and Wolffe A.P., 1999. Methylation-induced repression — Belts, braces and chromatin. Cell 99: 451–454.
Bird A., Taggart M., Frommer M., Miller O.J., and Macleod D., 1985 A fraction of the mouse genome that is derived from islands of non-methylated, CpG-rich DNA. Cell 40: 91–99.
Bourc’his D. and Bestor T.H., 2004. Meiotic catastrophe and retrotrans-poson reactivation in male germ cells lacking Dnmt3L. Nature 431: 96–99.
Boyes J. and Bird A., 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG-binding protein. Cell 64: 1123–1134.
Brandeis M., Frank D., Keshet I., Siegried Z., Mendelsohn M., Nemes A., TemperV.,RazinA., and Cedar H., 1994. Spl elements protect a CpG island from de novo methylation. Nature 371: 435–438.
Bruniquel D. and Schwartz R.H., 2003. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4: 235–240.
Buschhausen G., Wittig B., Graessmann M., and Graessmann A., 1987. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. 84: 1177–1181.
Chen R.Z., Akbarian S., Tudor M., and Jaenisch R., 2001. Deficiency of methyl-CpG-binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27: 327–331.
Chen W.G., Chang Q., Lin Y., Meissner A., West A.E., Griffith E.C., Jaenisch R., and Greenberg M.E., 2003. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885–889.
Cooney C.A., Dave A.A., and Wolff G.L., 2002. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132: 2393S-2400S.
Cooper D.N. and Youssoufian H., 1988. The CpG dinucleotide and human genetic disease. Hum. Genet. 78: 151–155.
Cooper D.N., Taggart M.H., and Bird A.P., 1983. Unmethylated domains invertebrate DNA. Nucleic Acids Res. 11: 647–658.
Dennis K., Fan T., Geiman T., Yan Q., and Muegge K., 2001. Lsh. a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15: 2940–2944.
Dodge J.E., Okano M., Dick R., Tsujimoto N., Chen T., Wang S., Ueda Y., Dyson N., and Li E., 2005. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem. 280: 17986-17991.
Egger G., Liang G., Aparicio A., and Jones P.A., 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.
Ehrlich M., 1982. Amount and distribution of 5-methycytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 10: 2709–2721.
Ehrlich M., 2003. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol. 109: 17–28.
Frank D., Keshet I., Shani M., Levine A., Razin A., and Cedar H., 1991. Demethylation of CpG islands in embryonic cells. Nature 351: 239–241.
Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt J., Grigg G.W., Molloy P.L., and Paul C.L., 1992. A genomic sequencing protocol that yields a positive display of 5-methyl-cytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. 89: 1827–1831.
Gaudet E., Hodgson J.G., Eden A., Jackson-Grusby L., Dausman J., Gray J.W., Leonhardt H., and Jaenisch R., 2003. Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.
Gibbons R.J., McDowell XL., Raman S., O’Rourke D.M., Garrick D., Ayyub H., and Higgs D.R., 2000. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat. Genet. 24: 368–371.
Guy J., Hendrich B., Holmes M., Martin J.E., and Bird A., 2001. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27: 322–326.
Harbers K., Schnieke H., Stuhlmann H., Jahner D., and Jaenisch B., 1981. DNA methylation and gene expression; endogenous retroviral genome becomes infectious after molecular cloning. Proc. Natl. Acad. Sci. 78: 7609–7613.
Hata K., Okano M., Lei H., and Li E., 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129: 1983–1993.
Hendrich B., Guy J., Ramsahoye B., Wilson V. A., and Bird A., 2001. Closely related proteins Mbd2 and Mbd3 play distinctive but interacting roles in mouse development. Genes Dev. 15: 710–723.
Hendrich B., Hardeland U., Ng H.-H., Jiricny J., and Bird A., 1999. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401: 301–304.
Herman J.G., Graff J.R., Myohanen S., Nelkin B.D., and Baylin S.B., 1996. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. 93: 9821–9826.
Holliday R. and Pugh J.E., 1975. DNA modification mechanisms and gene activity during development. Science 186: 226–232.
Hutchins A., Mullen A., Lee H., Barner K., High E, Hendrich B., Bird A., and Reiner S., 2002. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol. Cell 10: 81–91.
Jackson J.P., Lindroth A.M., Cao X., and Jacobsen S.E., 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556–560.
Jahner D., Stuhlmann H., Stewart C.L., Harbers K., Lohler J., Simon I., and Jaenisch R., 1982. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298: 623–628.
Jeddeloh J.A., Stokes T.L., and Richards E.J., 1999. Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nat. Genet. 22: 94–97.
Jones P.A. and Taylor S.M., 1980. Cellular differentiation, cytidine analogues and DNA methylation. Cell, 20: 85–93.
Jones P.L., Veenstra G.J., Wade P.A., Vermaak D., Kass S.U., Landsberger N., Strouboulis J., and Wolffe A.P., 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet., 19: 187–191.
Kaneda M., Sado T., Hata K., Okano M., Tsujimoto N., Li E., and Sasaki H., 2004. Role of de novo DNA methyltransferases in initiation of genomic imprinting and X-chromosome inactivation. Cold Spring Harbor Symp. Quant. Biol. 69: 125–129.
Kass S. U., LandsbergerN., and Wolffe A.P., 1997. DNA methylation directs a time-dependent repression of transcription initiation. Curr.Biol. 7: 157–165.
Kawasaki H. and Taira K., 2004. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431: 211–217.
Klose R.J., Sarraf S.A., Schmiedeberg L., McDermott S.M., Stancheva 1., and Bird A.P., 2005. DNA binding specificity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol. Cell, 19: 667–678.
Lehnertz B., Ueda Y., Derijck A.A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., and Peters A.H., 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13: 1192–1200.
Lei H., Oh S.P., Okano M., Juttermann R., Gos K.A., Jaenisch R., and Li E., 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122: 3195–3205.
Li E., Bestor T.H., and Jaenisch R., 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.
Lin I.G., Tomzynski T.J., Ou Q., and Hsieh C.L., 2000. Modulation of DNA binding protein affinity directly affects target site demethylation. Mol. Cell. Biol., 20: 2343–2349.
Lindahl T., 1974. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. 71: 3649–3653.
Luikenhuis S., Giacometti E., Beard C.F., and Jaenisch R., 2004. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl. Acad. Sci. 101: 6033–6038.
MacLeod D., Charlton J., Mullins J., and Bird A.P., 1994. Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8: 2282–2292.
Martienssen R.A., Doerge R.W., and Colot V., 2005. Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Res. 13: 299–308.
Martinowich K., Hattori D., Wu H., Fouse S., He F., Hu Y., Fan G., and Sun Y.E., 2003. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation Science 302: 890–893.
Mayer W., Niveleau A., Walter J., Fundele R., and Haaf T., 2000. Demethylation of the zygotic paternal genome. Nature 403: 501–502.
McKeon C., Ohkubo H., Pastan I., and de Crombrugghe B., 1982. Unusual methylation pattern of the alpha 2(1) collagen gene. Cell 29: 203–210.
Meehan R.R., Lewis J.D., McKay S., Kleiner E.L., and Bird A.P., 1989. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58: 499–507.
Millar C.B., Guy J., Sansom O.J., Selfridge J., MacDougall E., Hendrich B., Keightley P. D., Bishop S.M., Clarke A.R., and Bird A., 2002. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297: 403–405.
Mohandas T., Sparkes R.S., and Shapiro L.J., 1981. Reactivation of an inactive human X-chromosome: Evidence for X-inactivation by DNA methylation. Science 211: 393–396.
Nan X., Ng H.-H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., and Bird A., 1998. Xranscriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.
Okano M., Xie S., and Li E., 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet., 19: 219–220.
Okano M., Bell D.W, Haber D.A., and Li E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.
Petronis A., 2001. Human morbid genetics revisited: Relevance of epigenetics. Trends Genet. 17: 142–146.
Posfai J., Bhagwat A.S., Posfai G., and Roberts R.J., 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17: 2421–2435.
Prokhortchouk A., Hendrich B., Jorgensen H., Ruzov A., Wilm M., Georgiev G., Bird A., and Prokhortchouk E., 2001. The pl20 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev.: 1613–1618.
Riggs A.D., 1975. X-inactivation, differentiation and DNAmethylation. Cytogenet. Cell Genet. 14: 9-25.
Rougier N., Bourc’his D., Gomes D.M., Niveleau A., Plachot M., Paldi A., and Viegas-Pequignot E., 1998. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12: 2108–2113.
Sarraf S.A. and Stancheva I., 2004. Methyl-CpG-binding protein MBD1 couples histone H3 methylation at lysine 9 by SEXDB1 to DNA replication and chromatin assembly. Mol. Cell 15: 595–605.
Simonsson S. and Gurdon J., 2004. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol. 6: 984–990.
Stein R., Razin A., and Cedar H., 1982. In vitro methylation of the hamster adenine phosphorybosy transferase gene inhibits its expression in mouse L cells. Proc. Natl. Acad. Sci. 79: 4418–3422.
Stewart C.L., Stuhlmann H., Jahner D., and Jaenisch R., 1982. De novo methylation and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc. Natl. Acad. Sci. 79: 4098–4102.
Tamaru H. and Selker E.U., 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.
Tufarelli C., Stanley J.A., Garrick D., Sharpe J.A., Ayyub H., Wood W.G., and Higgs D.R., 2003. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34: 157–165.
Vardimon L., Kressmann A., Cedar H., Maechler M., and Doerfler W., 1982. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl. Acad. Sci. 79: 1073–1077.
Venolia L., Gartler S.M.. Wasserman E.R., Yen R, Mohandas X., and Shapiro L.J., 1982. Xransformation with DNA from 5 azacytidine-reactivated X chromosomes. Proc. Natl. Acad. Sci. 79: 2352–2354.
Vire E., Brenner C., Deplus R., Blanchon L., Fraga M., Didelot C., Morey L., Van Eynde A., Bernard D., Vanderwinden J.M., et al., 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.
Wade P.A., Gegonne A., Jones P.L., Ballestar E., Aubry R., and Wolffe A.P., 1999. Mi-2 complex couples DNA methylation to chromatin remodeling and histone deacetylation. Nat. Genet. 23: 62–66.
Walsh C.P., Chaillet J.R., and BestorX.H., 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet., 20: 116–117.
Waterland R.A. and Jirtle R.L., 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell. Biol. 23: 5293–5300.
Watt F. and Molloy P.L., 1988. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus late promoter. Genes Dev. 2: 1136–1143.
Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., and Meaney M.J., 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847–854.
Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., LamW.L., and Schubeler D.. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37: 853–862.
Wigler M.H., 1981. The inheritance of methylation patterns in vertebrates. Cell 24: 285–286.
Wolf S.E., Jolly D.J., Lunnen K.D., Friedman T., and Migeon B.R., 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X-chromosome: Implications for X-chromosome inactivation. Proc. Natl. Acad. Sci. 81: 2806–2810.
Yoon H.G.. Chan D.W., Reynolds A.B.. Qin J.. and Wong J.. 2003. N-CoR mediates DNA methylation-dependent repression through a methyl CpG-binding protein Kaiso. Mol. Cell 12: 723–734.
Zilberman D., Cao X., and Jacobsen S.E., 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299: 716–719.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК