2. История эпигенетики на симпозиумах Колд Спринг Харбор
В 1941 году, во время 9-го симпозиума, великий генетик-дрозофилист Герман Меллер (H.J. Muller) описал результаты дальнейшей разработки явления, первоначально названного им «eversporting displacement», — явления, когда крупные хромосомные перестройки приводили к мутантной мозаичной экспрессии генов вблизи точки разрыва (Muller, 1941). Ко времени симпозиума он называл это «мозаицизмом, обусловленным эффектом положения» («position effect variegation»). Было надежно установлено, что затрагиваемые гены были перенесены «в соседство с гетерохроматиновым районом», что перенесенные эухроматиновые участки «были частично, но в разной степени, трансформированы в состояние гетерохроматина — ‘гетерохроматинизированы’» и что добавление экстракопий гетерохроматиновых хромосом «позволяло затронутому гену становиться более нормальным в своем функционировании». В то время это последнее наблюдение вызывало недоумение и было неожиданным, хотя теперь мы знаем, что это результат титрования лимитирующих компонентов гетерохроматина.
На 16-м симпозиуме (1951) высший приоритет имело детальное понимание гена. Этим можно объяснить, почему в понимании мозаицизма, обусловленного эффектом положения (PEV), имел место незначительный прогресс, хотя и были открыты новые примеры этого явления. Однако первый докладчик отметил, что PEV станет захватывающей областью будущих исследований (Goldschmidt, 1951). Барбара МакКлинток отметила, что хромосомные эффекты положения являются основой различий в «мутабильных локусах» кукурузы, и высказала предположение, что наблюдавшаяся ею изменчивость мутабильности, возможно, коренится в тех же механизмах, что лежат в основе PEV у Drosophila (McClintock. 1951).
Ко времени 21-го симпозиума идеи МакКлинток о «контролирующих элементах» получили дальнейшее развитие (McClintock, 1956). Две из них имели особо близкое отношение к эпигенетике. В системе контролирующего элемента Spm она обнаружила варианты, позволившие ей различать trans-действующие факторы, которые могут «подавлять» ген (уменьшать или устранять его фенотипическое выражение), а не заставлять его мутировать. Она также отметила, что некоторые контролирующие элементы могли подавлять действие гена не только в том локусе, куда они вставлены, но и в локусах, которые расположены на некотором расстоянии с той или другой стороны от него. Другие исследователи также обнаруживали этот «эффект распространения». Шульц представил биохимические и физические характеристики целых Drosophila, содержащих разные количества гетерохроматина (Schultz, 1956) Хотя эта работа была весьма примитивной, а сделанные на ее основе выводы имели ограниченное значение, она явилась примером первых попыток расчленить структуру гетерохроматина и продемонстрировала, насколько трудной окажется эта проблема.
Два сообщения на 23-м симпозиуме явились вехами в свете нашего сегодняшнего симпозиума. Во-первых, Бринк описал свои ошеломляющие наблюдения «парамутаций» в локусе R у кукурузы. Если две аллели (Rst и Rr) с разными фенотипами в гомозиготном состоянии комбинируются и образуют гетерозиготу, и это растение Rst/Rr, в свою очередь, снова скрещивается, получающееся в результате потомство, которое содержит аллель Rr, всегда будет иметь фенотип Rst, хотя аллель Rst больше не присутствует (Brink, 1958). Однако этот фенотип является метастабильным — в последующих скрещиваниях он ревертирует к нормальному фенотипу Rr. Бринк предполагал, что слово «парамутация» «должно использоваться в этом контексте в своем буквальном смысле, как указывающее на явление, отличное от мутации, но и не полностью непохожее на нее». Во-вторых, Нэнни пошел очень далеко в попытках сформулировать «концептуальные и операциональные различия между генетическими и эпигенетическими системами» (Nanney, 1958). По существу он определил эпигенетику иначе, чем первоначально предполагалось Уодцингтоном (Waddington) (детали см. Haig, 2004). Он счел необходимым поступить таким образом, для того чтобы описать явления, наблюдавшиеся им у Tetrahymena. Он получил данные о том, что происхождение цитоплазмы конъюгирующих родительских клеток влияет на детерминацию типа спаривания получающегося потомства. Данное им определение охватывало и наблюдения, сделанные другими исследователями, включая работу Бринка по локусу R и работу МакКлинток, отмеченную на 21-м симпозиуме.
На 29-м симпозиуме значительный интерес вызвала гипотеза инактивации Х-хромосомы у самок млекопитающих, незадолго до этого предложенная Мэри Лайон (Lyon, 1961). Еартлер, Бойтлер и Нанс представили новые данные в ее поддержку (Beutler, 1964; Gartler and Linder, 1964; Nance, 1964). Бойтлер дал обзор многочисленных примеров мозаичной экспрессии сцепленных с X генов у женщин, которые свидетельствовали в пользу случайной природы Х-инактивации. Основываясь на тщательном количественном анализе продукта гена, сцепленного с X, Нанс заключил, что инактивация Х-хромосомы происходит до наступления 32-клеточной стадии эмбриона.
38-й симпозиум на тему «Структура и функция хромосом» явился возвратом к изучению эукариотических хромосом — к этому времени значительный прогресс был достигнут в изучении прокариотических и фаговых систем, и, как следствие, в расцветающей области молекулярной биологии в мышлении в основном доминировала экспрессия бактериальных генов. Однако росло и понимание роли хроматина (ДНК с гистонами и негистоновыми белками) у эукариот, но было неясно, связана ли его роль со структурой хромосомы, с ее функциями или же и с тем, и другим (Swift, 1974). Тем не менее, несколько групп начали высказывать предположения, что с транскрипцией генов или с общей структурой хромосом связана посттрансляционная модификация белков хроматина, в том числе гистонов (Allfrey et al., 1974; Louie et al., 1974; Weintraub, 1974). В воздухе витал лишь намек на эпигенетические явления. Высказывались гипотезы о том, что у эукариот большинство генов регулируются повторяющейся ДНК — отчасти исходя из того факта, что открытые МакКлинток контролирующие элементы повторены в геноме. Сообщалось, однако, что большая часть повторяющихся нуклеотидных последовательностей ДНК не сцеплена с генами (Peacock et al., 1974; Rudkin and Tartof, 1974). С учетом этих наблюдений идея о том, что повторяющиеся элементы регулируют экспрессию генов, в значительной мере утратила поддержку со стороны присутствовавших. Что, однако, более важно, в этих же самых исследованиях обнаружилось, что большая часть повторяющейся ДНК локализована в гетерохроматине.
42-к симпозиум продемонстрировал, что за четыре года разительное количество технических и интеллектуальных достижений полностью преобразили изучение эукариотических хромосом (Chambon 1978). К их числу относились использование ферментов рестрикции ДНК, разработка технологии рекомбинантных ДНК, рутинное разделение белков и нуклеиновых кислот, возможность проведения Саузерн- и Норзерн-анализа, быстрое секвенирование ДНК и РНК и иммунофлуоресценция на хромосомах. Была представлена нуклеосомная гипотеза и был открыт сплайсинг и РНК. Основной интерес на этом симпозиуме привлекли биохимические и цитологические различия в структуре хроматина, особенно между активно транскрибируемыми и неактивными генами. Если, однако, говорить о том, что имело наиболее близкое отношение к эпигенетике, то Вайнтрауб с сотрудниками представил свои соображения относительно того, каким образом хроматин может обусловливать мозаичную экспрессию генов у организма (Weintraub et al., 1978).
45-й симпозиум явился торжеством открытий Барбары МакКлинток — подвижных генетических элементов (Yarmolinsky, 1981). Выполненные в механистическом плане исследования бактериальной транспозиции продемонстрировали чрезвычайный прогресс и вполне оправданно составили около половины всех представленных сообщений, в то время как другие доклады содержали данные о том, что транспозиция и регулируемая реорганизация генома происходят не только у кукурузы, но и у других эукариот, в том числе у мух, львиного зева, трипаносом, гриба Ascobolus и почкующихся дрожжей. В контексте этого совещания все наблюдавшиеся случаи мозаичной экспрессии были отнесены на счет транспозиций. Более того, имела место скрытая тенденция всерьез считать, что контролирующие элементы ответственны за большую часть регуляции генов (Campbell, 1981), что привело некоторых участников к предположению, что «единственной функцией этих элементов является стимулирование генетической изменчивости». В сущности, идея о том, что за регулируемую экспрессию в мозаицизме, обусловленном эффектом положения, ответствен гетерохроматин, была поставлена под сомнение. По отношению к будущим эпигенетическим исследованиям, вероятно, наибольшее внимание заслуживало твердое обоснование наличия «молчащих» кассет типов спаривания («silent mating cassetttes») у Saccharomyces cerevisiae (Haber et al., 1981; Klar et al., 1981; Nasmyth et al. 1981; Rine et al., 1981).
В порядке подготовки к 47-му симпозиуму у позвоночных была установлена общая корреляция, согласно которой общий уровень метилирования цитозинов в ДНК-последовательностях CpG ниже для генов, которые транскрибируются, чем для тех, которые не транскрибируются. Однако имелись исключения из этого общего правила, и более детальный анализ показал, что наиболее важным является метилирование специфических участков промотора гена (Cedar et al., 1983; Doerfler et al., 1983; La Volpe et al., 1983). Базируясь на системах рестрикции-модификации у бактерий, полагали, что метилирование ДНК предотвращает связывание ключевых регуляторных белков. К тому же было показано, что паттерны метилирования ДНК у позвоночных могут наследоваться через митоз, что приводило к гипотезе о том, что метилирование ДНК может служить средством транскрипционной «памяти» в процессе деления клеток в ходе развития (Shapiro and Mohandas, 1983). Еще одним главным открытием, имеющим отношение к эпигенетике, была идентификация нуклеотидных последовательностей ДНК по ту или другую сторону от «молчащих кассет типов спаривания» у почкующихся дрожжей, которые отвечают за транскрипционную репрессию генов, находящихся внутри этих кассет; они, таким образом, оказались первыми нуклеотидными последовательностями ДНК, необходимыми для хромосомных эффектов положения (Abraham et al., 1983).
«Молекулярная биология развития» была темой 50-го симпозиума, и на нем тоже был представлен ряд важных достижений. Возможно, одним из самых волнующих успехов было осознание всеми того факта, что фундаментальные молекулярные свойства являются консервативными в ходе эволюции — например, RAS человека функционирует в почкующихся дрожжах, гомеобоксные белки консервативны у мух и человека (Rubin et al., 1985). Новые попытки понять хромосомный импринтинг начались с разработки техники ядерных пересадок у мышей (Solter et al., 1985). Эти исследования показали, что в отцовском и материнском геномах новой зиготы хранится информация о происхождении от того или другого родителя; важна не просто ДНК сама по себе; хромосомы содержат дополнительную информацию, через кого из родителей они прошли, и эта информация необходима для успешного развития эмбриона. Полагали, что частично ответ лежит в том факте, что от происхождения хромосомы от того или другого родителя зависит дифференциальная экспрессия генов (Cattanach and Kirk, 1985).
Имелся ряд исследований, направленных на понимание сложной регуляции комплекса bithorax; особенно следует отметить сообщение Льюиса, который специально остановился на странной природе известных trans-регуляторов этого локуса; почти все они являются репрессорами данного локуса (Lewis, 1985). Таким образом, поддержание гена в «молчащем» состоянии на протяжении многих клеточных удвоений является обязательным для нормального развития. Это противоречило весьма распространенному в то время мнению, согласно которому там, где будут приниматься критические регуляторные рещения, касающиеся развития, имеет место активация/индукция гена.
К тому времени для ряда организмов была разработана техника ДНК-трансформации и инсерционного мутагенеза. Один из примеров особенно продуктивного и имеющего отношение к эпигенетике использования этой технологии был получен на Drosophila. Был создан транспозон P-элемент с геном white (цвет глаз) на нем и он «прыгал» по всему геному (Rubin et al., 1985). Это дало возможнсть картировать во всем геноме Drosophila сайты, где мог происходить PEV.
Этот симпозиум высветил также первые генетические подходы к расчленению (dissection) явлений детерминации пола и компенсации дозы половых хромосом у Drosophila (Belote et al., 1985; Maine et al., 1985) и Caenorhabditis elegans (Hodgkin et al., 1985; Wood et al., 1985).
58-й симпозиум отвел главное место празднованию 40-й годовщины открытия, сделанного Уотсоном и Криком. Частью этого торжества была выездная «тусовка», посвященная эпигенетическим явлениям: говорилось об идентификации новых явлений, начале молекулярного анализа других явлений, на ряде систем был достигнут существенный прогресс, позволяющий предлагать гипотезы и тестировать их.
У трипаносом гены семейства Генов Вариабельных Поверхностных антигенов (VSG — Variable Surface antigene Genes), локализованных возле теломер, в основном «молчат», и в каждый данный момент экспрессируется только один VSG. Хотя этот организм, по-видимому, не содержит метилированной ДНК, сообщалось, что «молчащие» гены VSG содержат новое минорное основание, 0-D-глюкозилгидроксиметилурапил (Borst et al., 1993). Это основание, по-видимому, занимает в ДНК место тимидина. Нетрудно провести параллели между этим основанием и метилированием цитозина у других организмов — эти модификации важны для поддержания «молчащего» гена. Но как это основание вводится в ДНК или как оно осуществляет такую функцию, было неясно.
Прогресс был также достигнут в изучении эпигенетических явлений у позвоночных, в том числе хромосомного импринтинга и инактивации Х-хромосомы (Ariel et al., 1993; Li et al., 1993; Tilghman et al., 1993; Willard et al., 1993). К этому времени стало ясно, что у млекопитающих многие локусы подвержены импринтингу; в диплоидных клетках экспрессируется лишь одна аллель, и экспрессия зависит от ее происхождения от того или другого родителя. Особый интерес представлял локус Igf2-H19, главным образом потому, что он содержал два соседних гена, которые регулировались противоположным образом. Igf2 экспрессируется в отцовской хромосоме, тогда как материнская копия репрессирована; в то же время отцовская аллель
Н19 репрессирована, а материнская аллель этого гена экспрессируется. Интересно, что метилированные CpG наблюдались на отцовской хромосоме непосредственно «вверх по течению» от обоих генов Предположили, что дифференциальное метилирование регулирует доступ этих двух генов к близлежащему энхансерному элементу — этот энхансер расположен ближе к Н19 и непосредственно «вниз по течению» от него (Tilghman et al., 1993). Можно было представить себе взаимоисключающую конкуренцию между этими двумя генами за энхансер; когда ген HJ9 метилирован, энхансер свободен и активирует более удаленный ген Igf2. В пользу идеи, что метилирование ДНК играет регуляторную роль в этом процессе, свидетельствовали эксперименты с мышами. Мутация первого гена позвоночных, кодирующего 5-метилцитозин-ДНК-метилтрансферазу в ES-клетках, показала, что по мере развития эмбрионов отцовская копия Н19 становилась гипометилированной, и этот ген становился транскрипционно активным (Li et al., 1993).
Важным шагом в расшифровке того, как 5MeCpG опосредует свои эффекты, явилась очистка первого комплекса, связывающегося с 5MeCpG в ДНК (MeCPl — 5MeCpG DNА-binding complex) (Bird 1993). MeCPl не только связывается с ДНК, но и, связавшись «вверх по течению» от репортерного гена, вызывает репрессию этого гена. Хотя это и не объясняло регуляцию в локусе Igf2-H19, но давало возможный механизм для объяснения общей корреляции между метилированием ДНК и репрессией гена.
Генетическое картирование на протяжении ряда лет позволило идентифицировать ту часть Х-хромосомы человека, которая является критичной для инактивации Х-хромосомы. Исследования этого центра X-инактивации с использованием молекулярного клонирования привели к открытию гена Xist (Willard et al., 1993), некодирующей РНК размером ― 17 т. о., который экспрессируется только на неактивной Х-хромосоме. Мышиная версия Xist оказалась на удивление гомологичной по структуре и нуклеотидной последовательности и обещала стать прекрасной модельной системой для «расчленения» того пути, на котором эта РНК функционирует и репрессирует большую часть Х-хромосомы.
Два заслуживающих внимания открытия были описаны у Neurospora (Selker et al., 1993). Во-первых, было показано, что метилирование цитозинов в ДНК не ограничено динуклеотидами CpG, а может происходить как будто бы в любом ДНК-контексте. Вторым открытием стало описание удивительного явления индуцируемых повторами точечных мутаций (RIP — repeat-induced point mutation). Когда в гаплоидном геноме имеется дупликация некой последовательности (сцепленная или несцепленная), и этот геном посредством конъюгации проводится через половой цикл, нуклеотидные последовательности становятся «RIPованными». Происходят два события: обе копии дуплицированной ДНК приобретают мутации типа G: C → А: Т, а ДНК в пределах нескольких сотен пар оснований «RIPованных» последовательностей становится метилированной. Эта двойная атака на геном весьма эффективна — 50 % неспепленных локусов подвержены RIP, тогда как тесно сцепленные локусы достигают 100 % — и легко подавляет функцию генов.
Ген brown у Drosophila, будучи транслоцирован в соседство с гетерохроматином, демонстрирует доминантный PEV; транслоцированная копия может вызвать репрессию копии дикого типа. В ходе поисков энхансеров и супрессоров этого явления trans-инактивации Хеникоф (Henikoff) открыл, что дупликация гена, локализованного вблизи гетерохроматина, повышает уровень репрессии на нормальной копии (Martin-Morris et al., 1993). Хотя механизм, лежащий в основе этого события, оставался загадочным, постулировали, что это явление могло бы быть аналогичным RIP у Neurospora, хотя оно должно происходить в отсутствии метилирования ДНК, которое у Drosophila не происходит.
Пол Шедл (Paul Schedl) изложил концепцию хромосомных «граничных элементов» (Vazquez et al., 1993). Первые такие элементы были локализованы с той или другой стороны района «пуфа» в локусе теплового шока у Drosophila и определены по необычной структуре их хроматина — устойчивому к нуклеазе кору величиной ~300 п.н., ограниченному гиперчувствительными к нуклеазе сайтами. Постулировали, что такие элементы разделяют домены хроматина вдоль по длине хромосомы. Два теста in vivo свидетельствовали в пользу этой гипотезы: (1) Ограничивая ту или другую сторону репортерного гена, граничные элементы эффективно устраняли хромосомные эффекты положения, когда этот конструкт случайным образом вставлялся в геном. (2) Граничный элемент определялся также по его способности блокировать функцию энхансера. Будучи вставлен между промотором гена и его энхансером, граничный элемент блокировал экспрессию данного гена. Хотя и не в столь определенном виде, эта концепция граничных элементов была разработана и для других организмов, особенно на глобиновом локусе у млекопитающих (Clark et al., 1993).
Исследования на почкующихся дрожжах высветили развивающийся механистический подход [a mechanistic inroad] к связанным с хроматином эпигенетическим явлениям. Было уже установлено, что сайленсеры в «молчащих» локусах типа спаривания являются сайтами для нескольких связывающихся с ДНК белков. Их связывание оказалось зависимым от контекста, примером чего может быть белок Rap1, который не только играет важную роль в сайленсинге, но и связывается «вверх по течению» от ряда генов, активируя транскрипцию (обзор см. Laurenson and Rine, 1992).
На протяжении ряда лет были установлены многочисленные связи между репликацией ДНК и транскрипционно «молчащими» районами генома. Неактивная Х-хромосома, гетерохроматин и «молчащие» импринтированные локусы — все они, как сообщалось, поздно реплицируются в фазе S по сравнению с транскрипционно активными районами генома. Кроме того, было показано, что установление сайленсинга в «молчащих» локусах типа спаривания требует прохождения через фазу S, что заставляет предполагать, что «молчащий» хроматин должен быть построен на недавно реплицированной ДНК. Так, огромный интерес вызывал тот факт, что один из сайленсеров оказался точкой начала репликации ДНК («ориджином»), а его активность в этом качестве нельзя было отделить от функции сайленсинга (Fox et al., 1993). Более того, мутанты в недавно идентифицированном комплексе распознавания «ориджина» (ORC — origin recognition complex) «портили» сайленсинг (Bell et al., 1993; Fox et al., 1993).
Еще один подход к «расчленению» структуры гетерохроматина и ее влияние на экспрессию генов обусловило открытие, показавшее, что теломеры у Saccharomyces cerevisiae приводят в действие PEV, аналогичный наблюдаемому у Drosophila. Репортерные гены, вставленные около теломер, обнаруживают мозаичную экспрессию в колонии дрожжей. Репрессированное состояние зависит от многих генов (SIR2, SIR3, SIR4) из тех, что необходимы для сайленсинга в «молчащих» локусах типа спаривания. Были описаны несколько ключевых аспектов, касающихся структуры «молчащего» хроматина и регуляции мозаичной экспрессии. Заслуживает упоминания тот факт, что цитологически гетерохроматин определяется как конденсированный хроматин, но «молчащий» хроматин у S. cerevisiae никогда не удавалось визуализировать таким образом. Тем не менее, из-за сходства с PEVу Drosophila «молчащий» хроматин у дрожжей всегда были склонны рассматривать как функциональный эквивалент гетерохроматина (описано в Weintraub, 1993).
На основе исследований на дрожжах начал формироваться ряд фундаментальных концепций. Во-первых, стало очевидным важное значение гистонов H3 и Н4. В частности, аминотерминальный «хвост» гистонов H3 и Н4 оказался непосредственным участником формирования «молчащего» гетерохроматина (Thompson et al., 1993). Специфические мутации в «хвостах» этих гистонов облегчали или портили сайленсинг и позволяли думать, что и общий заряд остатков на «хвостах», и специфические остатки в составе «хвостов» вносят вклад в сайленсинг. Кроме того, на заре использования иммунопреципитации хроматина (ChIP) было продемонстрировано, что лизины в аминотерминальном «хвосте» гистона Н4 гипоацетилированы в районах «молчащего» хроматина по сравнению с остальной частью генома. Более того, одна из гистоновых мутаций позволила идентифицировать H4K16 гистонов (который может быть ацетилирован) как критичный для формирования «молчащего» хроматина
Теломеры оказались простейшей системой для более глубокого понимания того, каким образом белки Sir опосредуют сайленсинг. Была разработана концепция рекрутирования белков сайленсинга. Говоря коротко, оказалось, что белок Rap1, связывающийся с теломерной ДНК, взаимодействует с Sir3 и Sir4 двугибридным способом (by two-hybrid methods — описано в Palladino et al. 1993). Таким образом, Rap1 может «рекрутировать» эти белки Sir к теломерному району генома. Имелись данные о том, что Sir3 и Sir4 могут связываться друг с другом и что (и это особенно важно) Sir3 и, возможно, Sir4 взаимодействуют с «хвостами» гстонов H3 и Н4 (Thompson et al., 1993). Более того, сверхэкспрессия Sir3 заставляет его «распространяться» по хроматиновой фибрилле внутрь от теломеры, позволяя предполагать, что он является лимитирующим компонентом «молчащего» хроматина и может «полимеризоваться» вдоль хроматина (Renauld et al., 1993). Все вместе показывало, что существует, оказывается, обширная сеть взаимодействий, важная для сайленсинга, — белки Sir инициируют сборку на теломерной ДНК, благодаря их взаимодействию с Rap1, а затем полимеризуются от теломеры вдоль хроматинового волокна, предположительно связываясь с «хвостами» гистонов H3 и Н4.
Переключение между транскрипционными состояниями при мозаичной теломерной экспрессии оказалось результатом конкуренции в отношении экспрессии между «молчащими» и активными генами (Aparicio and Gottschling, 1994; описано в Weintraub, 1993). Если транскрипционный активатор для теломерного гена делегирован, базовый механизм транскрипции этого гена оказывается недостаточным для экспрессии, и этот ген оказывается конститутивно сайленсированным Наоборот, сверхэкспрессия активатора заставляла теломерный ген экспрессироваться постоянно — это ген никогда не был сайленсирован. В отсутствие SIR3 (или SIR2 или SIR4) базальная экспрессия гена была достаточной, тогда как увеличенная доза SIR3 повышала долю клеток, которые были сайленсированы. Хотя транскрипционный активатор мог преодолеть сайленсинг на протяжении всего клеточного цикла, он был наиболее эффективным, когда клетки были остановлены в фазе S — предположительно, когда хроматин реплицируется и, отсюда, оказывается наиболее чувствительным к конкуренции. Несколько удивляет, что клетки, остановленные на G2/M, также можно было легко переключить, что заставляло предполагать, что «молчащий» хроматин еще не был полностью собран к этому времени.
Было показано, что «молчащий» хроматин у дрожжей не поддается действию нуклеаз и ферментов модификации ДНК; это позволяет предположить, что лежащая в его основе ДНК гораздо менее доступна, чем большая часть генома (описано в Thompson et al. 1993).
Оказалось также, что имеет место иерархия сайленсинга в геноме дрожжей: наиболее чувствителны к пертурбациям теломеры, затем идет HML, а наименее чувствителен HMR. Действительно, когда ген SIR1 мутировал, локусы НМ, в норме полностью сайленсированные, обнаруживали мозаичную экспрессию (Pillus and Rine, 1989).
Наконец, Sir3 и Sir4 были локализованы на периферии ядра, как и теломеры. Предположили, что ядро организовано таким образом, что ядерная оболочка обеспечивает специальную среду для сайленсинга (Раlladinoetal., 1993).
Schizosaccharomyces pombe тоже имеют «молчащие» кассеты типов спаривания, которые, как подозревают, ведут себя аналогично кассетам типов спаривания у S cerevisiae. Однако у S. pombe в истории с переключением типов спаривания был дополнительный поворот. В элегантной серии экспериментов Эймар Клар (Amar Klar) выдвинул предположение о том, каким образом в клетке «метка» импринтируется на одной нити ДНК (Klar and Bonaduce, 1993). Эта метка проявляется, после двух клеточных делений, в одной из четырех «внучатых» клеток как двунитевой разрыв, облегчающий переключение типа спаривания У этих дрожжей отсутствуют какие-либо известные модификации ДНК (метилирование и т. п.); отсюда постулируется, что на нити ДНК оставляется метка какого-то иного типа.
Темой 59-го симпозиума была «Молекулярная генетика рака». Концепция эпигенетической регуляции в онкогенезе начала развиваться после того, как утвердилась идея генов-супрессоров опухолей. Была опубликована пара исследований в пользу таких представлений, но интересный поворот в этой истории возник в исследованиях пациентов с синдромом Бэквита-Видеманна и опухолями Уилмса. Мутации у пациентов обоих типов были картированы в локусе, включавшем импринтированные гены H19-IGF2 Фейнберг с соавторами (Feinberg et al., 1994) открыл у таких больных «утрату импринтинга» (LOI — loss of imprinting) для этих генов — материнский локус утрачивал свой импринт, Н19 был репрессирован, a IGF2 — экспрессирован. Таким образом, LOI, которая в принципе могла бы происходить в других местах генома, могла вызывать либо биаллельную экспрессию, либо исчезновение генов, критичных для онкогенеза, либо и то и, другое.
Через пару лет на пути к 63-му симпозиуму на тему «Механизмы транскрипции» произошли важные события, которые впоследствии повлияют на понимание молекулярных механизмов нескольких эпигенетических феноменов. Были идентифицированы ферменты, модифицирующие гистоны, а именно, ацетилазы и деацетилазы гистонов Некоторые из этих энзимов играли критическую роль в регулировании экспрессии генов и позволили подойти к генным продуктам, непосредственно влияющим на PEVи сайленсинг. На симпозиуме была представлена верхушка этого айсберга (см. Losick, 1998). Молекулярное «расчленение» сайленсирующих белков Sir3 и Sir4 у дрожжей выявило поливалентную природу их взаимодействий и показало, каким образом сеть взаимодействий между всеми белками Sir, гистонами и разнообразными факторами, связывающимися с ДНК, формирует «молчащий» хроматин. Кроме того, были показаны молекулярные детали того, как разнообразные локусы (теломеры, рДНК, локусы НМ и двунитевые разрывы) могут конкурировать за ограниченные ресурсы белков Sir. При нарушении способности специфического локуса рекрутировать факторы сайленсинга уровни содержания белков Sir в других локусах повышались (Cockell et al., 1998). Это прямо доказывало, что работает принцип действия масс и что сайленсинг в одном локусе может влиять на эпигенетический сайленсинг в других локусах (идея, первоначально выдвинутая в исследованиях PEV у Drosophila, но все еще не проверенная) (Locke et al., 1988). Еще одно открытие позволило объяснить, каким образом метилирование ДНК может регулировать экспрессию генов через хроматин. Были идентифицированы белковые комплексы, состоящие из МеСР2, которые связываются и с метилированной ДНК, и с деацетилазой гистонов (Wade et al., 1998). Метилированная ДНК могла служить точкой рекрутирования деапетилаз к локусу и таким образом облегчать сайленсинг близлежащих генов.
Концепция граничных элементов была распространена с Drosophila на млекопитающих (четкие данные были получены на локусе Р-глобина), показывая таким образом, что границы хроматина, вероятно, действительно консервативны у многоклеточных и. возможно, у всех эукариот (Bell et al., 1998).
На 64-м симпозиуме, темой которого был «Сигналинг и экспрессия в иммунной системе», были приведены данные о том, как возникает моноаллельная экспрессия, и о том, что она может быть распространена более широко, чем думали раньше. Моноаллельная экспрессия в локусах иммуноглобулинов на протяжении некоторого времени была очевидна для лимфоцитов — она гарантировала продукцию единственного типа рецепторов в каждой лимфоидной клетке (Mostoslavsky et al., 1999). Аллель, которая будет экспрессироваться, выбирается на ранних стадиях развития, очевидно, случайным образом: обе аллели вначале находятся в репрессированном состоянии, но через некоторое время одна из них деметилируется. Было неясно, как происходит выбор одной из аллелей, но это явление обнаруживается и в других локусах, где необходимость моноаллелизма была не столь очевидна. Например, экспрессируется только одна аллель генов, кодирующих цитокины IL-2 и IL-4 (Pannetieret al., 1999).
Наиболее значительное сообщение на 65-м симпозиуме, имеющее отношение к эпигенетике, касалось открытия того, что белок Sir2 является деацетилазой гистонов (Imai et al., 2000). Это был единственный белок Sir, у которого были очевидные гомологи у всех других эукариот и который регулировал PEV. Создавалось впечатление, что этот фермент в основном отвечает за удаление ацетильных компонентов гистонов в «молчащем» хроматине. Кроме того, поскольку это был фермент, зависимый от NAD, он связывал регуляцию сайленсинга (гетерохроматина) с клеточной физиологией.
68-й симпозиум на тему «Геном Homo sapiens» явился важной вехой в генетике, и хотя все еще остается проделать большую генетическую работу, полное секвенирование этого и других геномов означало, что пришло время переходить на «надгенетический» уровень — в буквальном значении слова «эпигенетика».
Этот исторический отчет высвечивает несколько тем, общих со многими другими областями исследования. Во-первых, он демонстрирует эпизодическую природу достижений в эпигенетике. Во-вторых, по мере постижения молекулярных механизмов, лежащих в основе эпигенетических явлений, стало легче связывать эпигенетику с биологической регуляцией в целом. В-третьих, он показал, что исследователи, которых мы в настоящее время считаем корифеями науки, установили эти связи очень рано — потребовалось лишь некоторое время, чтобы большинство остальных «увидели» очевидное.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК